
‭Rockset Hybrid Search Architecture‬

‭All vector search is hybrid search‬
‭All vector search is becoming hybrid search as it drives the most relevant, real-time‬
‭application experiences. Hybrid search involves incorporating vector search and text‬
‭search as well as metadata filtering, all in a single query. Hybrid search is used in‬
‭search, recommendations and retrieval augmented generation (RAG) applications.‬

‭Vector search is a way to find related text, images or videos that have similar‬
‭characteristics using machine learning models. While vector embeddings using‬
‭large language models (LLMs) have rapidly advanced and become widely‬
‭accessible, the generalizable nature of these models means that they are rarely‬
‭used in isolation in production applications. There are several reasons for this‬
‭including:‬

‭●‬ ‭Domain awareness:‬‭Generalizable models have limitations‬‭around domain‬
‭awareness; they are not familiar with terminology used by an internal team or‬
‭industry. Text search is helpful at finding specific terminology.‬

‭●‬ ‭Filters:‬‭Similarity search is designed to find items‬‭that are contextually alike. It‬
‭is not designed for exact filters such as a delivery application that needs to‬
‭find restaurants that only have 4+ stars and are within a 10 mile radius. In this‬
‭example, metadata can be used to filter application results.‬

‭●‬ ‭Referenceability:‬‭While natural language responses‬‭from LLMs can provide‬
‭helpful information and summarization, we see users verify the results or dig‬
‭deeper using source material.‬

‭●‬ ‭Hallucinations:‬‭It’s well known that LLMs are prone‬‭to hallucinations and‬
‭grounding them with contextual information can improve accuracy.‬

‭●‬ ‭Permissioning:‬‭Enterprises use permissions to ensure that answers are‬
‭privacy-aware and secure by only giving the LLM access to data accessible to‬
‭users.‬



‭Given these reasons, we see vector search intertwined with text search, relational‬
‭search and geospatial search to drive the most relevant results. There are several‬
‭investments that vector databases need to make to design for hybrid search:‬

‭●‬ ‭Fast complex search:‬‭Ability to support complex search‬‭across vectors, text,‬
‭geo, JSON and other data types to provide necessary context.‬

‭●‬ ‭Support for data and index changes:‬‭The processing‬‭of data, retraining of‬
‭indexes, and performance tuning of search all impact relevancy. Users will‬
‭iterate on indexing algorithms and model inputs over time, needing to quickly‬
‭and efficiently make changes.‬

‭●‬ ‭Rankings:‬‭With a hybrid approach, ranking becomes‬‭crucial to AI applications.‬
‭Incorporating a myriad of ranking algorithms and iterating on rank weighting‬
‭enables users to quickly enhance application relevance.‬

‭●‬ ‭Real-time updates:‬‭Many applications serve real-time‬‭data at scale to‬
‭enhance relevance. The ability to update and delete any data, including‬
‭vectors, in milliseconds while avoiding high reindexing costs makes hybrid‬
‭search economical.‬

‭Given the considerations above, Rockset is designed and optimized to ingest data in‬
‭real time, index different data types and run retrieval and ranking algorithms.‬

‭A diagram of how to run hybrid search in Rockset. Rockset has indexing, retrieval‬
‭and ranking built into its vector database.‬



‭Rockset for hybrid search: Converged Indexing‬
‭With Rockset, you can build vector indexes without impacting live search‬
‭applications. Its‬‭Converged Index‬‭provides the flexibility‬‭to index any data, including‬
‭vectors, text, document, geo and time series data, and apply ranking and scoring‬
‭using SQL. As a result, users of Rockset build and iterate on hybrid search‬
‭applications faster to drive the most relevant experiences. Rockset is designed for‬
‭hybrid search at scale:‬

‭●‬ ‭Update indexes without impacting live search performance‬
‭●‬ ‭Scale out to support multi-tenant applications at high concurrency‬
‭●‬ ‭Ranking is as easy as a SQL ORDER BY clause‬

‭Architecture of Converged Indexing‬

‭The Rockset Converged Index applies elements of a vector index, search index,‬
‭columnar store and row store on top of a key-value store abstraction. Rockset uses a‬
‭cost-based query optimizer to exploit multiple indexes in parallel for the most‬
‭efficient query execution.‬

‭Under the hood, Rockset uses‬‭RocksDB‬‭as its storage layer. Each document stored in‬
‭the Converged Index maps to many key-value pairs in the key-value store. This‬
‭allows for fast writes and field-level mutability, supporting real-time updates in‬
‭milliseconds.‬

‭Vector index‬

‭Rockset is designed to be indexing algorithm agnostic and currently supports‬
‭FAISS-IVF‬‭. FAISS is a vector indexing library open-sourced‬‭by Meta, and IVF is its‬
‭inverted file index implementation. Rockset builds a distributed FAISS vector index‬
‭that supports immediate insertion and recall.‬

‭Rockset stores and indexes vectors alongside text, JSON, geo and time series data‬
‭within the same collection. Users can create a vector index on any vector field(s).‬
‭FAISS-IVF uses cell-probe indexing to partition the vector space into Voronoi cells,‬

https://rockset.com/blog/converged-indexing-the-secret-sauce-behind-rocksets-fast-queries/
https://rockset.com/blog/rocksdb-is-eating-the-database-world/
https://github.com/facebookresearch/faiss


‭each represented by a centroid, which is the central point of the partition. The‬
‭centroids are computed using a sample of the dataset. Vectors are then assigned to‬
‭a partition or cell based on their proximity to a centroid.‬

‭A depiction of the Voronoi cells in FAISS. The centroid is the center of the cell. At‬
‭search time, cells closest to the search query vector are searched to generate the‬

‭results.‬

‭When indexing vectors, Rockset makes use of the columnar index part of its‬
‭Converged Index to scan all of the vectors, reducing the initial index build time. As‬
‭new records are added, they are immediately assigned to the cell based on the‬
‭vector index data distribution.‬‭The vector index also‬‭adds fields to each record to‬
‭store the closest centroid and the residual, the offset or distance from the closest‬
‭centroid, for search.‬



‭Rockset creates a posting list of the centroid vector which is stored in memory. Each‬
‭record in the collection also contains hidden fields of the centroid and the residual.‬

‭FAISS-IVF uses a search index as part of its implementation and there are benefits to‬
‭this approach: it is simpler, it scales better and it can store metadata efficiently.‬
‭FAISS-IVF has a shorter build time compared to graph algorithms that require layers‬
‭of building. While FAISS-IVF query runtime is middle of the pack against other‬
‭algorithmic approaches, it is well designed for reading data from disk. In contrast,‬
‭graph-based algorithms are fast in memory but traversal begins to fail as the index‬
‭is read from disk.‬



‭Source:‬‭ANN benchmarks‬

‭FAISS-IVF fits well into the existing search index structure of‬‭Rockset’s Converged‬
‭Index‬‭, making it ideal for hybrid search applications.‬‭Rockset treats centroids as‬
‭“terms” and maps values within the centroid to their respective documents. The‬
‭image below shows the concept of posting lists and how it can be used to execute‬
‭both term and vector searches efficiently.‬

https://arxiv.org/pdf/1807.05614.pdf
https://rockset.com/videos/build-similarity-index/
https://rockset.com/videos/build-similarity-index/


‭Posting lists containing each search term or centroid. In this example, segment 9‬
‭would be searched as it contains the Centroid:1 and the keyword terms.‬

‭Rockset shards its vector index, training a vector index per-shard. At query time, top K‬
‭results are retrieved from each shard and then aggregated to produce the search‬
‭results. Sharding is optimized for latency over throughput, making it ideal for‬
‭real-time systems at scale.‬

‭Rockset allows users to balance recall and speed for their AI applications. During‬
‭similarity index creation, the user can determine the number of centroids, with more‬
‭centroids leading to faster searches but increased indexing time. Users can specify‬
‭quantization values, compression values and vector dimensions. During querying,‬
‭the user can also choose the number of probes and the number of cells to search,‬
‭balancing speed and search accuracy.‬

‭Search index‬

‭Posting lists are fundamental to search database design, and Rockset’s search index‬
‭uses roaring bitmaps, compressed bitmaps that are optimized for both space and‬



‭efficiency, to store posting lists.‬

‭A posting list using roaring bitmaps. This example shows the segments that would‬
‭be searched intersecting and unionizing the posting lists.‬

‭Roaring bitmaps are optimized for performing set operations. For example,‬‭SELECT *‬
‭FROM foo WHERE centroid = 1 AND city = 'San Mateo'‬‭will intersect the posting‬
‭lists corresponding to‬‭(centroid, 1)‬‭and‬‭(city, 'San‬‭Mateo').‬‭This example‬
‭demonstrates that Rockset is ideal for hybrid search, where different data types need‬
‭to be intersected at query time.‬

‭Iterating through a posting list involves iterating one bitmap at a time, each of which‬
‭covers a group of document IDs. By processing groups of document IDs across‬
‭multiple posting lists in parallel, Rockset strikes a sweet spot between‬‭document at a‬
‭time (DAAT)‬‭and term at a time (TAAT) processing.‬‭Traditionally, DAAT involves‬
‭iterating one document at a time across multiple posting lists in parallel. TAAT‬
‭involves reading one full posting list, processing it, passing it as a filter to the next‬
‭one, and then repeating until all posting lists have been handled. Rockset smooths‬
‭the gap between the two approaches by processing groups of document IDs at a‬
‭time.‬

https://web.stanford.edu/class/cs276/handouts/efficient_scoring_cs276_2013_6.pdf
https://web.stanford.edu/class/cs276/handouts/efficient_scoring_cs276_2013_6.pdf


‭Rockset utilizes covering indexes as part of its search index design to accelerate‬
‭vector search performance. Covering indexes offer the ability to store hit data in the‬
‭search index. As a result, all data required for a query can be fetched solely from the‬
‭search index, without needing to access row or column store data. Rockset stores‬
‭residuals in the covering index of the centroid entries in the search index so vector‬
‭search is handled with just one index lookup.‬

‭With covering indexes, posting lists now contain document IDs and‬‭(field, value)‬
‭pairs for covered fields. Going back to the previous example, searching for‬
‭(centroid, 1)‬‭will now return‬‭[(doc ID 0, (city, 'San‬‭Mateo'), (region,‬
‭'US')), (doc ID 1, (city, 'Frankfurt'), (region, 'EU')), ...]‬‭.‬

‭A covering Index for the “centroid” contains additional information, including the‬
‭“city” and “region”, avoiding a lookup step for the added fields during query‬

‭execution.‬

‭Rockset’s search index is optimized for join queries, making it easy to combine‬
‭multiple collections or datasets together. For hash joins and nested loop joins, if the‬
‭data access for either side of the join is selective, the search index will be used to‬
‭fetch the rows for that side of the join before applying the join operation. In addition,‬
‭lookup join is a join strategy that leverages the search index in a novel way. For‬
‭example, consider the join‬‭A INNER JOIN B ON A.x =‬‭B.x WHERE B.y = 5‬‭. If the‬



‭predicate‬‭B.y = 5‬‭is highly selective and causes the right side of the join to contain‬
‭only a few (< 100) rows, Rockset uses a lookup join to transfer the ~100 values of‬ ‭B.x‬
‭to the compute nodes serving the shards of collection A. For each of those values,‬
‭Rockset uses the search index to perform an efficient lookup for whether a matching‬
‭A.x‬‭exists, and if so, emit a match for further processing‬‭or returning of the results.‬

‭Rockset also joins on vector similarity across collections. This involves splitting input‬
‭from one side into chunks and joining these input vectors against a collection of‬
‭documents using a batched similarity search. This type of join is useful for isolating‬
‭documents associated with a concept across collections and can easily be used to‬
‭support multi-modal models where metadata can be split by modality.‬

‭Vector Search‬

‭To fully reap the benefits of the Converged Index, Rockset’s cost-based query‬
‭optimizer analyzes the query and the underlying data distribution statistics to identify‬
‭the most efficient data access path.‬

‭Fundamentally, there are two data access paths supported in Rockset for‬‭vector‬
‭search with metadata filtering‬‭:‬

‭●‬ ‭Pre-filter: Apply filters and then run an exact nearest neighbor search to return‬
‭the K nearest neighbors to a query vector.‬

‭●‬ ‭Single-stage filter: Run an approximate nearest neighbor search and iterate‬
‭through the centroids until K nearest neighbors are returned.‬

‭For a given search, Rockset’s cost-based optimizer explores the query plans and‬
‭chooses the plan with the lowest cost. Choosing the optimal data access path‬
‭predominantly depends on estimating the selectivity of the data access. For‬
‭example, a vector search query “Give me 5 nearest neighbors where <filter>?” would‬
‭need to weigh the different filters and their selectivity, then reorder, plan and‬
‭optimize the search.‬

https://rockset.com/blog/vector-search-scale/
https://rockset.com/blog/vector-search-scale/


‭The query profiler in Rockset leveraging both the vector index and search index for‬
‭execution.‬



‭A highly selective query is a query that fetches a small percentage of rows from the‬
‭underlying collection. In this scenario, it would be more cost-efficient to pre-filter and‬
‭apply the filters first before running an exact nearest neighbor search. In this‬
‭situation, Rockset automatically leverages only the search index to return the results.‬

‭If the filter is not highly selective, Rockset will use single-stage filtering. It will iterate‬
‭through the closest centroids to the query until it finds the K nearest neighbors. In this‬
‭scenario, Rockset’s query optimizer asks FAISS for the closest centroids to the query‬
‭embedding using the specified number of probes for guidance. Probes determine‬
‭the upper limit of centroids considered during the search process. Under the hood,‬
‭Rockset applies the centroids as additional query filters to the WHERE clause.‬

‭An example of how Rockset rewrites a vector search query. Rockset’s query‬
‭optimizer asks FAISS for the closest centroids to the query embedding. It orders by‬

‭the distance between the query and the stored vectors.‬



‭Single-stage filtering is more computationally efficient than a post-filtering‬
‭operation where all centroids are scanned before filters are applied. Rockset does‬
‭not support post-filtering operations for this reason.‬

‭Rockset collects statistics on the data distribution for a collection which are‬
‭maintained continuously, and these are used to estimate the selectivity of data‬
‭accesses needed in a hybrid search query.‬

‭Real-time Updates‬

‭Rockset supports real-time updates to vectors and metadata. Rockset is mutable at‬
‭an individual field level so an update to the vector on a single record will result in an‬
‭instruction to FAISS-IVF to generate a new centroid and residual. When this occurs,‬
‭Rockset only reindexes the centroid and the residual for the updated vector field,‬
‭allowing this operation to occur in less than 200 milliseconds.‬

‭Real-time updates in Rockset. When a field value is updated, in this case the vector‬
‭embedding for Edwin Jarvis, only the individual embedding field is updated rather‬
‭than the entire document. Rockset instructs FAISS-IVF to generate a new centroid‬

‭and the residual. These are hidden fields that are used in vector search.‬

‭To support real-time updates, Rockset’s Converged Index separates the logical‬
‭search index from its physical representation as a key-value store, which is unique in‬
‭search database design. Indexes are mutable because each key refers to a‬



‭document fragment, meaning that a user can update a single vector or metadata‬
‭field in the document without triggering a reindexing of the entire document.‬

‭Traditional search databases tend to suffer from reindexing storms because even if‬
‭a single vector or metadata is updated in a large document, the entire document‬
‭must be reindexed.‬

‭Tiered Storage of Indexes‬

‭Rockset takes a disk-based approach to indexing. Rockset shards its indexes,‬
‭applying a local index to each shard stored on SSDs. Once the local index is created,‬
‭it is uploaded to S3 for durability. For vector search, Rockset only keeps the posting‬
‭list in memory, greatly reducing the memory footprint for better price performance.‬

‭Rockset’s tiered storage which makes use of cloud storage for performance and‬
‭durability.‬

‭Isolation of resources for indexing and search‬

‭Rockset’s‬‭compute-compute separation‬‭ensures that‬‭the continuous streaming and‬
‭indexing of vectors will not affect search performance. In Rockset’s architecture, a‬
‭virtual instance represents a cluster of compute nodes. Virtual instances can  be‬

https://rockset.com/blog/introducing-compute-compute-separation/


‭used to either index data and/or handle query workloads. Multiple virtual instances‬
‭can simultaneously access the same dataset, eliminating the need for multiple‬
‭replicas of data.‬

‭A high level overview of compute-compute separation. Shows that virtual instances‬
‭can be used to isolate ingestion and indexing from query processing.‬

‭Rockset is designed so virtual instances that perform ingestion tasks are completely‬
‭isolated from those that perform query processing. Thus, the data ingestion,‬
‭transformation and indexing code paths work independently from the query parsing,‬
‭optimization and execution in Rockset.‬

‭For data to be shared across multiple compute units in real time, Rockset uses‬
‭RocksDB. In addition to being a popular key-value storage engine, it’s also a popular‬
‭Log Structured Merge (LSM) tree‬‭storage engine. In‬‭LSM Tree architectures, new writes‬
‭are written to an in-memory memtable. These memtables are flushed, when they fill‬
‭up, into immutable sorted strings table (SST) files.‬

‭Rockset designed compute-compute separation to be real time by replicating the‬
‭in-memory state of the memtable in the RocksDB “leader” performing the ingestion,‬
‭indexing and compaction into the memtables in the RocksDB “follower” instances‬

https://en.wikipedia.org/wiki/Log-structured_merge-tree


‭that serve queries. This makes fresh data available in single-digit milliseconds‬
‭across all RocksDB instances that are following the “leader” instance. This‬
‭implementation means that the compute-intensive ingestion work of indexing and‬
‭compaction happens only on the leader, avoiding redundant compute expense in‬
‭the followers.‬

‭A detailed diagram of compute-compute separation. Updates to the “leader”‬
‭memtable are immediately made available to “follower” memtables, enabling‬

‭follower virtual instances to access the latest data. The architecture of‬
‭compute-compute separation designates the leader to run ingestion, indexing and‬

‭compaction.‬

‭Compute-compute separation makes it possible for Rockset to support concurrent‬
‭indexing and search. Compute-compute separation also ensures that users can‬
‭keep their vector indexes’ recall high by retraining them on the ingester instance‬
‭when needed without interfering with search workloads.‬

‭It’s well known that periodically retraining the index can be computationally‬
‭expensive. In many systems, the reindexing and search operations happen on the‬
‭same cluster. This introduces the potential for indexing to negatively interfere with‬



‭the search performance of the application. With compute-compute separation,‬
‭Rockset avoids this issue for predictable performance at any scale.‬

‭Multi-tenant design‬

‭Rockset allows users to partition records in an index by tenant. At collection creation‬
‭time, users can specify tenant partitioning field(s) such as‬‭tenant_id.‬‭Rockset‬
‭stores the tenant (128 bit hash of all tenant partitioning fields) at the head of the‬
‭search index key so the search index can use the information to reduce the search‬
‭space significantly. For vector search, this means that although a vector index is built‬
‭across all records, the search space at‬‭query time is reduced dramatically by‬
‭filtering on the‬‭tenant_id‬‭field, speeding up search‬‭performance.‬

‭With Rockset’s‬‭compute-storage separation‬‭, Rockset‬‭users can create multiple‬
‭virtual instances, or isolated compute and memory resources, per tenant or for‬
‭multiple tenants to ensure predictable query performance at scale.‬

‭Additional Indexes‬

‭Search Index Design for BM25‬

‭BM25‬‭is a ranking function used to estimate the relevance‬‭of documents given terms‬
‭from a search query. BM25 leverages a bag-of-words approach by ranking‬
‭documents based on the search terms appearing in each document, regardless of‬
‭term proximity.‬

‭The Rockset Search Index allows for the storage of well-known attributes within the‬
‭index itself, computed during the indexing process. In the case of BM25, Rockset‬
‭computes and stores the term frequency per document as a well-known attribute,‬
‭so for each term-document pair in the search index, Rockset tracks the frequency of‬
‭the term within the document.‬

‭Rockset also tracks two values at the collection level: the total number of documents‬
‭and the running sum of the total document length, which allows us to easily‬
‭compute the average document length. Given the use of well-known attributes and‬

https://rockset.com/blog/separate-compute-storage-rocksdb/
https://en.wikipedia.org/wiki/Okapi_BM25


‭Unset‬

‭collection-level metadata, Rockset can calculate BM25 scores for individual‬
‭documents with minimal computational overhead.‬

‭BM25(‬
‭terms,‬
‭field‬

‭) [OPTION(k=1.6)] [OPTION(b=0.75]‬

‭Rockset stores the term frequency per document in the search index as a‬
‭term-document pair.‬

‭Search Index Design for Geo Search‬

‭Rockset’s search index also supports indexing geography values. Typical geospatial‬
‭queries are not usually searching for exactly one point, but for some compact region‬
‭of points, like all points within a given distance, or within a polygon. To serve this‬
‭need, Rockset repurposed the search index to work differently for geographies. First,‬
‭Rocksert partitions the surface of the earth into a hierarchical grid of roughly square‬



‭Unset‬

‭cells using the‬‭S2 library‬‭. For each point in a collection, Rockset adds an entry in the‬
‭search index for each cell which contains it. Since these cells form a hierarchy, a‬
‭single point is contained by many cells- its immediate parent, and all of that cell’s‬
‭ancestors. This increases space usage, but pays off with better query performance.‬

‭Columnar Store for Analytics‬

‭The column index stores all values for a particular column contiguously on storage. A‬
‭query can efficiently fetch exactly the columns that it needs, which makes it ideal for‬
‭analytical queries over wide datasets. Additionally, column-oriented storage has‬
‭better compression ratios. Values within one column are usually similar to each‬
‭other, and similar values compress really well when stored together. There are some‬
‭advanced techniques that make compression even better, like dictionary‬
‭compression or run-length encoding.‬

‭Row Store for Lookups‬

‭The row index refers to storing data in row orientation, which is fairly standard in‬
‭databases. It optimizes for row lookups and is how Postgres and MySQL are‬
‭organized.‬

‭Ranking Design‬

‭Ranking with Reciprocal Rank Fusion‬

‭Reciprocal Rank Fusion (RRF) provides an effective method for combining document‬
‭rankings from multiple search modalities like vector search, text search, and‬
‭geospatial search. RRF sorts documents according to a proven scoring formula and‬
‭reduces the need to normalize scores across different search modalities.‬

‭The formula balances contributions from various search modalities, allowing for a‬
‭more nuanced and comprehensive ranking of documents across different search‬
‭engines. Rockset achieves this with a new SQL function:‬

‭RANK_FUSION(‬
‭score [DESC|ASC] [WEIGHT weight],‬

http://s2geometry.io/


‭Unset‬

‭...‬
‭) [OPTION(k=60)]‬

‭Rockset’s RANK_FUSION function executes in memory during the last stage of the‬
‭query execution process.‬

‭Ranking with Linear Combination‬

‭Linear combinations provide a ranking mechanism by summing outputs from‬
‭different search modalities with constant coefficient weightings.‬

‭(:alpha * score1) + ((1-:alpha) * score2)‬

‭By adjusting the coefficient, users can fine tune the influence of each modality,‬
‭enabling a flexible and customizable ranking system. Linear combinations are‬
‭typically used to combine scores across search modalities with normalized scores as‬
‭the output.‬

‭Hybrid Search Queries‬

‭Vector search and text search‬

‭Vector search finds similar items but can miss relevant keywords, that’s why many‬
‭applications use a hybrid approach, combining vector search and text search, to‬
‭improve the relevancy of results.‬

‭Rockset supports hybrid vector and text search.‬‭BM25‬‭scores documents based on‬
‭the frequency and distribution of query terms, providing a measure of text relevance.‬
‭Both‬‭BM25‬‭and‬‭APPROX_DOT_PRODUCT‬‭return normalized‬‭scores, allowing users to‬
‭combine the outputs using a linear combination to create a hybrid score.‬



‭Unset‬

‭Unset‬

‭SELECT‬
‭tweet,‬
‭:alpha * APPROX_DOT_PRODUCT(:search_embedding, tweet_embedding)‬

‭+ (1 - :alpha) * BM25(:search_terms, tweets_tokens)‬
‭as hybrid_score‬

‭FROM‬
‭twitter t‬

‭ORDER BY‬
‭hybrid_score DESC‬

‭LIMIT‬
‭10‬

‭A SQL example that combines the scores from vector search and text search using‬
‭an‬‭alpha‬‭parameter to weigh the contributions.‬

‭EXPLAIN‬‭plan:‬

‭select‬‭tweet:$23,‬‭hybrid_score:$25,‬‭text_score:$18‬
‭sort‬‭$50‬‭desc‬‭limit‬‭10‬
‭project‬‭$25=(add_(multiply_(0.7,‬‭$18),‬‭multiply_(0.3,‬‭$22)))‬
‭hash‬‭inner‬‭join‬‭on‬‭($21‬‭=‬‭$19)‬
‭reshuffle‬‭on_aggregators(1)‬
‭add fields on commons.twitter: fields($21=_id, $23=tweet)‬

‭index similarity search on commons.twitter: fields(),‬
‭$22=kInnerProduct(simidx:rrn:simidx:usw2a1:cc937023-8b‬

‭4f-4879-a279-7c24e00c1222, [1.50781, 0.230469,‬
‭0.0649414, 0.0397949, -0.0228271, -0.291016, -0.458984,‬
‭-2.07424e-05, -0.196289, 0.296875, -0.503906, ...,‬
‭0.0515137, -0.15332, -0.275391]), query(all)‬

‭reshuffle‬‭on_aggregators(1)‬
‭$18=bm25‬‭operator‬‭with‬‭avgdl‬‭on‬‭$11‬‭for‬‭query‬
‭['college','basketball']‬‭on‬‭tweet_tokenized,‬‭$19=_id‬

‭project‬‭$11=divide_($10,‬‭$5)‬
‭aggregate‬‭sink‬‭on‬‭():‬‭$10=sum($9)‬‭hash‬‭($8)‬‭grouping‬

‭($7)‬



‭Unset‬

‭aggregate‬‭source‬‭on‬‭():‬‭$9=sum($6)‬‭hash‬‭($8)‬‭grouping‬
‭($7)‬

‭document‬‭length‬‭lookup‬‭$6‬‭ON‬
‭commons.twitter:tweet_tokenized‬

‭aggregate‬‭sink‬‭on‬‭():‬‭$5=sum($4)‬‭hash‬‭($3)‬‭grouping‬‭($2)‬
‭aggregate‬‭source‬‭on‬‭():‬‭$4=sum($1)‬‭hash‬‭($3)‬‭grouping‬

‭($2)‬
‭document‬‭count‬‭lookup‬‭$1‬‭ON‬

‭commons.twitter:tweet_tokenized‬

‭BM25‬‭calculates the relevance score based on text‬‭search.‬‭APPROX_DOT_PRODUCT‬
‭computes the similarity score based on vector search. The‬‭hybrid_score‬‭combines‬

‭these scores with an‬‭alpha‬‭parameter to balance their‬‭contributions.‬

‭By adjusting the‬‭alpha‬‭parameter, users can control‬‭the influence of text relevance‬
‭and vector similarity in the search results. The hybrid approach enhances the search‬
‭by leveraging the strengths of both text and vector search methodologies.‬

‭Vector search and metadata filtering‬

‭Rockset supports both exact nearest neighbor (KNN) and approximate nearest‬
‭neighbor (ANN) searches. The distance between embeddings can be calculated‬
‭using built-in distance functions‬‭EUCLIDEAN_DIST‬‭,‬‭DOT_PRODUCT‬‭,‬‭COSINE_SIM‬‭. To‬
‭orchestrate this in SQL, Rockset employs the‬ ‭ORDER‬‭BY similarity DESC‬‭clause to‬
‭sort results by similarity metrics and the‬‭LIMIT k‬‭clause to restrict the output to the‬
‭top k results. Metadata filtering is integrated using the‬‭WHERE‬‭clause to impose‬
‭specific constraints.‬

‭SELECT‬
‭tweet,‬
‭APPROX_DOT_PRODUCT(:search_embedding,‬‭tweet_embedding)‬‭as‬‭similarity‬

‭FROM‬
‭twitter‬‭t‬

‭WHERE‬



‭Unset‬

‭t.user.friends_count‬‭>‬‭1000‬
‭AND‬‭t.user.verified_type‬‭=‬‭'blue'‬
‭AND‬‭t.place.country_code‬‭=‬‭'US'‬

‭ORDER‬‭BY‬
‭similarity‬‭DESC‬

‭LIMIT‬
‭10‬

‭Query of vector search with metadata filtering. The query identifies tweets that align‬
‭with defined user profiles and geographical locations.‬

‭In this example, the query targets tweets from verified users in the United States with‬
‭over 1000 friends, highlighting popular profiles. The‬‭APPROX_DOT_PRODUCT‬‭function‬
‭computes the similarity between tweet embeddings in the collection and an‬
‭embedded search query.‬

‭Rockset's cost-based optimizer selects the most efficient approach, choosing‬
‭between pre-filtering and single-stage filtering. An‬‭EXPLAIN‬‭plan for the query details‬
‭the chosen execution sequence, demonstrating the applied filtering strategy:‬

‭select tweet:$5, similarity:$4‬
‭reshuffle ordered by $4 desc on_aggregators(1) limit 10‬
‭add fields on commons.twitter: fields($5=tweet) [estimated rows:‬

‭160]‬
‭index similarity search on commons.twitter:‬

‭fields($1=place.country_code, $2=user.friends_count,‬
‭$3=user.verified_type),‬
‭$4=kInnerProduct(simidx:rrn:simidx:usw2a1:cc937023-8b4f-4879-a2‬
‭79-7c24e00c1222, [1.50781, 0.230469, 0.0649414, 0.0397949,‬
‭-0.0228271, -0.291016, -0.458984, -2.07424e-05, -0.196289,‬
‭0.296875, -0.503906, ..., 0.0515137, -0.15332, -0.275391]),‬
‭query(and($1:string['US'], $2:float(1000.0,inf], int(1000,max],‬
‭$3:string['blue'])) limit 10 [estimated rows: 160]‬

‭A portion of the EXPLAIN plan for the vector search and metadata filtering query.‬



‭Unset‬

‭The similarity search index is selected on four fields:‬‭place.country_code‬‭,‬
‭user.friends_count‬‭,‬‭user.verified_type‬‭, and‬ ‭kInnerProduct‬‭.‬‭The fields for‬
‭metadata filtering,‬‭place.country_code‬‭,‬‭user.friends_count‬‭and‬
‭user.verified_type‬‭,  are applied before calculating‬‭the inner product. Given the‬
‭selectivity of the filters, the cost-based query optimizer leveraged the pre-filtering‬
‭strategy.‬

‭Vector search and geospatial search‬

‭Vector search can be enhanced with geospatial filtering or geospatial ranking.‬
‭Searches across geospatial data are implemented using Rockset’s built-in‬
‭geographic functions including:‬‭ST_DISTANCE‬‭,‬‭ST_CONTAINS‬‭and‬‭ST_INTERSECTS‬‭.‬

‭Geographic functions are integrated into the‬‭WHERE‬‭clause of a SQL query to refine‬
‭searches based on geographical proximity or containment.‬

‭SELECT‬
‭tweet,‬
‭APPROX_DOT_PRODUCT(:search_embedding,‬‭tweet_embedding)‬‭as‬‭similarity‬

‭FROM‬
‭twitter‬‭t‬

‭WHERE‬
‭ST_DISTANCE(‬

‭ST_GEOGPOINT(t.coordinates.lat, t.coordinates.long),‬
‭ST_GEOGPOINT(:search_latitude, :search_longitude)‬

‭) < :distanceMeters‬
‭ORDER‬‭BY‬

‭similarity‬‭DESC‬
‭LIMIT‬

‭10‬

‭A query with vector search and geospatial search. The query identifies similar‬
‭tweets within a defined geospatial location. The‬‭ST_DISTANCE‬‭filters tweets within a‬

‭specified radius from a given point.‬

‭EXPLAIN‬‭plan:‬



‭Unset‬

‭Unset‬

‭select tweet:$4, similarity:$1‬
‭reshuffle ordered by $1 desc on_aggregators(1) limit 10‬
‭add fields on commons.twitter: fields($4=tweet) [estimated rows: 0]‬
‭limit 10 ordered by $1 desc‬
‭filter on (st_distance(st_geogpoint($2, $3), POINT(-142.433‬
‭-57.6749)) < 16100) [estimated rows: 0]‬
‭add fields on commons.twitter: fields($2=coordinates.lat,‬
‭$3=coordinates.long) [estimated rows: 0]‬

‭index similarity search on commons.twitter: fields(),‬
‭$1=kInnerProduct(simidx:rrn:simidx:usw2a1:cc937023-8b4f-4879-a2‬
‭79-7c24e00c1222, [1.50781, 0.230469, 0.0649414, 0.0397949,‬
‭-0.0228271, -0.291016, -0.458984, -2.07424e-05, -0.196289,‬
‭0.296875, -0.503906, ... 0.0515137, -0.15332, -0.275391]),‬
‭query(all)‬

‭The EXPLAIN plan where‬‭coordinates‬‭and‬‭kInnerProduct‬‭are selected from the‬
‭similarity search‬‭index‬

‭In this example, a geospatial constraint is applied to filter out records outside a‬
‭defined range. However, a more nuanced approach involved ranking results by‬
‭geographic proximity. Reciprocal Rank Fusion (RRF) can be used to combine multiple‬
‭ranking signals, such as geographic proximity and vector similarity, into a single‬
‭ranking score.‬

‭SELECT‬
‭tweet,‬
‭RANK_FUSION(‬

‭ST_DISTANCE(‬
‭ST_GEOGPOINT(t.coordinates.lat, t.coordinates.long),‬
‭ST_GEOGPOINT(:search_latitude, :search_longitude)‬

‭),‬
‭APPROX_DOT_PRODUCT(:search_embedding, tweet_embedding)‬

‭) as hybrid_rank‬
‭FROM‬

‭twitter t‬
‭ORDER BY‬

‭hybrid_rank DESC‬



‭Unset‬

‭LIMIT‬
‭10‬

‭A vector search and geographic proximity query using the RFF ranking algorithm.‬
‭The hybrid rank considers both the geographic distance and semantic similarity of‬

‭tweets in sorting the result set.‬

‭EXPLAIN‬‭plan:‬

‭select tweet:$2, hybrid_rank:$8‬
‭sort $8 desc limit 10‬
‭project $8=(add_(divide_(1, add_(60.0, $7)), divide_(1, add_(60.0,‬

‭$6))))‬
‭window: $6=rank() order: $1 range between: unbounded preceding, 0‬
‭window: $7=rank() order: $5 range between: unbounded preceding, 0‬
‭reshuffle on_aggregators(1)‬
‭project $5=(st_distance(st_geogpoint($3, $4), POINT(-142.433‬
‭-57.6749)))‬

‭add fields on commons.twitter: fields($2=tweet,‬
‭$3=coordinates.latitude, $4=coordinates.longitude)‬

‭index similarity search on commons.twitter: fields(),‬
‭$1=kInnerProduct(simidx:rrn:simidx:dev-usw2a1:UUID, [1.50781,‬
‭0.230469, 0.0649414, 0.0397949, -0.0228271, -0.291016,‬
‭-0.458984, -2.07424e-05, -0.196289, 0.296875, -0.503906, ...‬
‭0.0515137, -0.15332, -0.275391]), query(all)‬

‭An EXPLAIN plan showing that the‬ ‭ST_DISTANCE‬‭calculates‬‭the geographic distance‬
‭and‬ ‭APPROX_DOT_PRODUCT‬‭computes the similarity score.‬‭RANK_FUSION‬‭combines‬

‭these scores into a single ranking score,‬‭hybrid_rank‬‭,‬‭using the RRF method.‬

‭By combining both geospatial and vector search scores, RRF provides a balanced‬
‭ranking that takes into account both proximity and semantic similarity, resulting in‬
‭more relevant search results.‬



‭Conclusion‬
‭All search is becoming hybrid search. Rockset is designed for hybrid search at scale.‬
‭With its cloud-native architecture, users can build and retrain vector indexes without‬
‭impacting live search applications. Rockset has been built from the ground up for‬
‭indexing with a Converged Index that provides the flexibility to index vectors, text,‬
‭document, geo and time series data and intersects indexes for the most efficient‬
‭query execution.‬

‭LLMs are rapidly advancing with new skills, abilities and reasoning. Rockset unlocks‬
‭the value of these powerful models with its unique focus on hybrid search and ability‬
‭to quickly iterate on indexing, retrieval and ranking. Get started with hybrid search on‬
‭Rockset today with a‬‭free trial and $300 in credits‬‭.‬

https://rockset.com/create/

