Rockset Hybrid Search Architecture

All vector search is hybrid search

All vector search is becoming hybrid search as it drives the most relevant, real-time
application experiences. Hybrid search involves incorporating vector search and text
search as well as metadata filtering, all in a single query. Hybrid search is used in
search, recommendations and retrieval augmented generation (RAG) applications.

Vector search is a way to find related text, images or videos that have similar
characteristics using machine learning models. While vector embeddings using
large language models (LLMs) have rapidly advanced and become widely
accessible, the generalizable nature of these models means that they are rarely
used in isolation in production applications. There are several reasons for this
including:

e Domain awareness: Generalizable models have limitations around domain
awareness; they are not familiar with terminology used by an internal team or
industry. Text search is helpful at finding specific terminology.

e Filters: Similarity search is designed to find items that are contextually alike. It
is not designed for exact filters such as a delivery application that needs to
find restaurants that only have 4+ stars and are within a 10 mile radius. In this
example, metadata can be used to filter application results.

e Referenceability: While natural language responses from LLMs can provide
helpful information and summarization, we see users verify the results or dig
deeper using source material.

e Hallucinations: It's well known that LLMs are prone to hallucinations and
grounding them with contextual information can improve accuracy.

e Permissioning: Enterprises use permissions to ensure that answers are
privacy-aware and secure by only giving the LLM access to data accessible to

users.

Given these reasons, we see vector search intertwined with text search, relational
search and geospatial search to drive the most relevant results. There are several
investments that vector databases need to make to design for hybrid search:

o Fast complex search: Ability to support complex search across vectors, text,
geo, JSON and other data types to provide necessary context.

e Support for data and index changes: The processing of data, retraining of
indexes, and performance tuning of search all impact relevancy. Users will
iterate on indexing algorithms and model inputs over time, needing to quickly
and efficiently make changes.

e Rankings: With a hybrid approach, ranking becomes crucial to Al applications.
Incorporating a myriad of ranking algorithms and iterating on rank weighting
enables users to quickly enhance application relevance.

e Real-time updates: Many applications serve real-time data at scale to
enhance relevance. The ability to update and delete any dataq, including
vectors, in milliseconds while avoiding high reindexing costs makes hybrid

search economical.

Given the considerations above, Rockset is designed and optimized to ingest data in
real time, index different data types and run retrieval and ranking algorithms.

Rockset for Hybrid Search ot Scale

Inol&:imj
Rowking
Search index
Real-time and Re‘tﬁeVal Reciprocal Rank Fusion
wistorical Vector index N (RFF)
data H(/Emr} search
Range index Lingar combination
Column store

Performonce tune Enhance relevance

A diagram of how to run hybrid search in Rockset. Rockset has indexing, retrieval
and ranking built into its vector database.

Rockset for hybrid search: Converged Indexing

With Rockset, you can build vector indexes without impacting live search
applications. Its Converged Index provides the flexibility to index any data, including

vectors, text, document, geo and time series data, and apply ranking and scoring
using SQL. As a result, users of Rockset build and iterate on hybrid search
applications faster to drive the most relevant experiences. Rockset is designed for
hybrid search at scale:

e Update indexes without impacting live search performance

e Scale out to support multi-tenant applications at high concurrency

e Ranking is as easy as a SQL ORDER BY clause

Architecture of Converged Indexing

The Rockset Converged Index applies elements of a vector index, search index,
columnar store and row store on top of a key-value store abstraction. Rockset uses a
cost-based query optimizer to exploit multiple indexes in parallel for the most
efficient query execution.

Under the hood, Rockset uses RocksDB as its storage layer. Each document stored in
the Converged Index maps to many key-value pairs in the key-value store. This
allows for fast writes and field-level mutability, supporting real-time updates in
milliseconds.

Vector index

Rockset is designed to be indexing algorithm agnostic and currently supports
FAISS-IVF. FAISS is a vector indexing library open-sourced by Meta, and IVF is its
inverted file index implementation. Rockset builds a distributed FAISS vector index
that supports immediate insertion and recall.

Rockset stores and indexes vectors alongside text, JSON, geo and time series data
within the same collection. Users can create a vector index on any vector field(s).
FAISS-IVF uses cell-probe indexing to partition the vector space into Voronoi cells,

https://rockset.com/blog/converged-indexing-the-secret-sauce-behind-rocksets-fast-queries/
https://rockset.com/blog/rocksdb-is-eating-the-database-world/
https://github.com/facebookresearch/faiss

each represented by a centroid, which is the central point of the partition. The
centroids are computed using a sample of the dataset. Vectors are then assigned to
a partition or cell based on their proximity to a centroid.

Centroid ¢ *

!

FAISS assigns vectors to Voronoi cells. Each cell is
defined by a centroid.

A depiction of the Voronoi cells in FAISS. The centroid is the center of the cell. At
search time, cells closest to the search query vector are searched to generate the
results.

When indexing vectors, Rockset makes use of the columnar index part of its
Converged Index to scan all of the vectors, reducing the initial index build time. As
new records are added, they are immediately assigned to the cell based on the
vector index data distribution. The vector index also adds fields to each record to
store the closest centroid and the residual, the offset or distance from the closest
centroid, for search.

Centroid Vector
Number Vector Centroid Residual Name Age Location Embedding
1 Gt 101 1 10100101 Ediwin Jarvis 48 Malibu, California ||
2 Ctd 102
Samantha Los Angeles,
3 Ctd 103 1 1N000IN Morton 46 California [-]
Everywheresville,
1000 Ctd 109 3 1000100 Marvin Adams 23 United Kingdom []
Create FAISS-IVF index and store With reach record, compute and store the centroid and residual

centroid identifiers in memory

Rockset creates a posting list of the centroid vector which is stored in memory. Each
record in the collection also contains hidden fields of the centroid and the residual.

FAISS-IVF uses a search index as part of its implementation and there are benefits to
this approach: it is simpler, it scales better and it can store metadata efficiently.
FAISS-IVF has a shorter build time compared to graph algorithms that require layers
of building. While FAISS-IVF query runtime is middle of the pack against other
algorithmic approaches, it is well designed for reading data from disk. In contrast,
graph-based algorithms are fast in memory but traversal begins to fail as the index
is read from disk.

-104

17,000
15
=
g 1
E 7,189
g 5,032
305
= : 765 802 14”4”002()67 D H
0 22 262 287 (0 m
N <
ﬂfﬁ éék ,ég& o éﬁx‘b {:&0 {'J% @C} ?Sgé *&\ \5\“0
F I P FPLPEFFSTES
<3 ¥ V\\k S <& A8

22 & &

Figure 10 Index build time in seconds for dataset GLOVE. The plot shows the minimum build time for an
index that achieved recall of at least 0.9 for 10-NN.

Source: ANN benchmarks

FAISS-IVF fits well into the existing search index structure of Rockset’'s Converged

Index, making it ideal for hybrid search applications. Rockset treats centroids as
“terms” and maps values within the centroid to their respective documents. The
image below shows the concept of posting lists and how it can be used to execute
both term and vector searches efficiently.

https://arxiv.org/pdf/1807.05614.pdf
https://rockset.com/videos/build-similarity-index/
https://rockset.com/videos/build-similarity-index/

Pet = ‘Puppy’ AND Owner = ‘Lauren AND City = ‘Hamburg’ AND
(Centroid = 1 OR Centroid = 9 OR Centroid = 10)

a[Centroid: 1]—»[9 H 17 J
——{ Centroid: 9 J’—{ 8 H 13 H 29]—»[30 }
a[Centroid: 10 }————[2]—»[15 H :2]]—-[29]
»[Pet: Puppy [6]—»[?]—»[17}
~ owner-tawen | 4 J+{ 7 | 5 }{ 2 |
H.[City: Hamburg }?__.[4]—»[5 H 7]—»[9 }

Posting lists containing each search term or centroid. In this example, segment 9
would be searched as it contains the Centroid:1 and the keyword terms.

Rockset shards its vector index, training a vector index per-shard. At query time, top K
results are retrieved from each shard and then aggregated to produce the search
results. Sharding is optimized for latency over throughput, making it ideal for
real-time systems at scale.

Rockset allows users to balance recall and speed for their Al applications. During
similarity index creation, the user can determine the number of centroids, with more
centroids leading to faster searches but increased indexing time. Users can specify
quantization values, compression values and vector dimensions. During querying,
the user can also choose the number of probes and the number of cells to search,
balancing speed and search accuracy.

Search index

Posting lists are fundamental to search database design, and Rockset’s search index
uses roaring bitmaps, compressed bitmaps that are optimized for both space and

efficiency, to store posting lists.

Query predicate Posting list (bitmap)

WHERE centroid = 1

WHERE city = 'San Mateo'

WHERE centroid = 1
OR city = 'San Mateo'

WHERE centroid = 1
AND city = 'San Mateo'

A posting list using roaring bitmaps. This example shows the segments that would
be searched intersecting and unionizing the posting lists.

Roaring bitmaps are optimized for performing set operations. For example, SELECT *
FROM foo WHERE centroid = 1 AND city = 'San Mateo' will intersect the posting
lists corresponding to (centroid, 1) and (city, 'San Mateo'). This example
demonstrates that Rockset is ideal for hybrid search, where different data types need
to be intersected at query time.

Iterating through a posting list involves iterating one bitmap at a time, each of which
covers a group of document IDs. By processing groups of document IDs across
multiple posting lists in parallel, Rockset strikes a sweet spot between document at a
time (DAAT) and term at a time (TAAT) processing. Traditionally, DAAT involves
iterating one document at a time across multiple posting lists in parallel. TAAT

involves reading one full posting list, processing it, passing it as a filter to the next
one, and then repeating until all posting lists have been handled. Rockset smooths
the gap between the two approaches by processing groups of document IDs at a
time.

https://web.stanford.edu/class/cs276/handouts/efficient_scoring_cs276_2013_6.pdf
https://web.stanford.edu/class/cs276/handouts/efficient_scoring_cs276_2013_6.pdf

Rockset utilizes covering indexes as part of its search index design to accelerate
vector search performance. Covering indexes offer the ability to store hit data in the
search index. As a result, all data required for a query can be fetched solely from the
search index, without needing to access row or column store data. Rockset stores
residuals in the covering index of the centroid entries in the search index so vector
search is handled with just one index lookup.

With covering indexes, posting lists now contain document IDs and (field, value)
pairs for covered fields. Going back to the previous example, searching for

(centroid, 1) willnowreturn [(doc ID 0, (city, 'San Mateo'), (region,

'Us')), (doc ID 1, (city, 'Frankfurt'), (region, 'EU"'")), ...].

“centroid”

“City" “centroid”’s

index covers

“city” and

“region”
“region”
Input documents Search index

A covering Index for the “centroid” contains additional information, including the
“city” and “region”, avoiding a lookup step for the added fields during query

execution.

Rockset’s search index is optimized for join queries, making it easy to combine
multiple collections or datasets together. For hash joins and nested loop joins, if the
data access for either side of the join is selective, the search index will be used to
fetch the rows for that side of the join before applying the join operation. In addition,
lookup join is a join strategy that leverages the search index in a novel way. For
example, consider the join A INNER JOIN B ON A.x = B.x WHERE B.y = 5.Ifthe

predicate B.y = 5 is highly selective and causes the right side of the join to contain
only a few (< 100) rows, Rockset uses a lookup join to transfer the ~100 values of B.x
to the compute nodes serving the shards of collection A. For each of those values,
Rockset uses the search index to perform an efficient lookup for whether a matching
A . x exists, and if so, emit a match for further processing or returning of the results.

Rockset also joins on vector similarity across collections. This involves splitting input
from one side into chunks and joining these input vectors against a collection of
documents using a batched similarity search. This type of join is useful for isolating
documents associated with a concept across collections and can easily be used to
support multi-modal models where metadata can be split by modality.

Vector Search

To fully reap the benefits of the Converged Index, Rockset’s cost-based query
optimizer analyzes the query and the underlying data distribution statistics to identify
the most efficient data access path.

Fundamentally, there are two data access paths supported in Rockset for vector

sedrch with metadata filtering:

e Pre-filter: Apply filters and then run an exact nearest neighbor search to return
the K nearest neighbors to a query vector.

e Single-stage filter: Run an approximate nearest neighbor search and iterate
through the centroids until K nearest neighbors are returned.

For a given search, Rockset's cost-based optimizer explores the query plans and
chooses the plan with the lowest cost. Choosing the optimal data access path
predominantly depends on estimating the selectivity of the data access. For
example, a vector search query “Give me 5 nearest neighbors where <filter>?” would
need to weigh the different filters and their selectivity, then reorder, plan and
optimize the search.

https://rockset.com/blog/vector-search-scale/
https://rockset.com/blog/vector-search-scale/

Start

IndexSimilaritySearchOperator
35.2ms

Search Index: Add Fields
on twitter (1 field)
0.2ms

Scatter
0Oms

Gather (Ordered)
0.3ms

10 rows

The query profiler in Rockset leveraging both the vector index and search index for

execution.

A highly selective query is a query that fetches a small percentage of rows from the
underlying collection. In this scenario, it would be more cost-efficient to pre-filter and
apply the filters first before running an exact nearest neighbor search. In this
situation, Rockset automatically leverages only the search index to return the results.

If the filter is not highly selective, Rockset will use single-stage filtering. It will iterate
through the closest centroids to the query until it finds the K nearest neighbors. In this
scenario, Rockset’s query optimizer asks FAISS for the closest centroids to the query
embedding using the specified number of probes for guidance. Probes determine
the upper limit of centroids considered during the search process. Under the hood,
Rockset applies the centroids as additional query filters to the WHERE clause.

SELF

”ELECT SELECT
city, city,
Region, Region,

APPROX_DOT_PRODUCT (:search_guery,
tweet embedding)

as similarity
WHERE

location = "San Matec, California"”

FROM

example
ORDER BY

similarity DESC
LIMIT

10

APPROX_DOT_PRODUCT (:search_query,
tweet_embedding)

as similarity
WHERE

location = "San Mateo, California"

posting_list in [2, 4, 1000]
FROM

example
ORDER BY

Index distance (index

transform(:query), _vector code)
LIMIT

10

AND

An example of how Rockset rewrites a vector search query. Rockset’s query
optimizer asks FAISS for the closest centroids to the query embedding. It orders by
the distance between the query and the stored vectors.

Single-stage filtering is more computationally efficient than a post-filtering
operation where all centroids are scanned before filters are applied. Rockset does
not support post-filtering operations for this reason.

Rockset collects statistics on the data distribution for a collection which are
maintained continuously, and these are used to estimate the selectivity of data
accesses needed in a hybrid search query.

Real-time Updates

Rockset supports real-time updates to vectors and metadata. Rockset is mutable at
an individual field level so an update to the vector on a single record will result in an
instruction to FAISS-IVF to generate a new centroid and residual. When this occurs,
Rockset only reindexes the centroid and the residual for the updated vector field,
allowing this operation to occur in less than 200 milliseconds.

Vector
Centroid Residual Name Age Location Embedding
] 10.36 Edwin Jarvis 49 Malibu, California [..o]
"., T Samantha 1
[4.53 Morton 46 Los Angeles, California [....]
\ Everywheresville,

3\ |213 Marvin Adams 23 United Kingdom [..]

' |

2. Rockset queries FAISS-IVF to generate 1. The vector embedding is updated.

the centroid and residual. It updates the
centroid and residual for the record.
These fields are not visible to the user.

Real-time updates in Rockset. When a field value is updated, in this case the vector
embedding for Edwin Jarvis, only the individual embedding field is updated rather
than the entire document. Rockset instructs FAISS-IVF to generate a new centroid

and the residual. These are hidden fields that are used in vector search.

To support real-time updates, Rockset's Converged Index separates the logical
search index from its physical representation as a key-value store, which is unique in
search database design. Indexes are mutable because each key refers to a

document fragment, meaning that a user can update a single vector or metadata
field in the document without triggering a reindexing of the entire document.

Traditional search databases tend to suffer from reindexing storms because even if
a single vector or metadata is updated in a large document, the entire document
must be reindexed.

Tiered Storage of Indexes

Rockset takes a disk-based approach to indexing. Rockset shards its indexes,
applying a local index to each shard stored on SSDs. Once the local index is created,
it is uploaded to S3 for durability. For vector search, Rockset only keeps the posting
list in memory, greatly reducing the memory footprint for better price performance.

Memory: Posting lists

SSDs: Collections with records that contain Performance

vectors, residuals and centroid values.

Cost

S3: Replicas of data for durability Durability

Rockset’s tiered storage which makes use of cloud storage for performance and
durability.

Isolation of resources for indexing and search

Rockset’'s compute-compute separation ensures that the continuous streaming and

indexing of vectors will not affect search performance. In Rockset’s architecture, a
virtual instance represents a cluster of compute nodes. Virtual instances can be

https://rockset.com/blog/introducing-compute-compute-separation/

used to either index data and/or handle query workloads. Multiple virtual instances
can simultaneously access the same dataset, eliminating the need for multiple
replicas of data.

Compute-compute separation

New vectors Al App 1 Al App 2

o il o

Streaming ingest
and indexing
compute

Vector search Vector search
compute compute

Shared hot storage

A high level overview of compute-compute separation. Shows that virtual instances
can be used to isolate ingestion and indexing from query processing.

Rockset is designed so virtual instances that perform ingestion tasks are completely
isolated from those that perform query processing. Thus, the data ingestion,
transformation and indexing code paths work independently from the query parsing,
optimization and execution in Rockset.

For data to be shared across multiple compute units in real time, Rockset uses
RocksDB. In addition to being a popular key-value storage engine, it's also a popular
Log Structured Merge (LSM) tree storage engine. In LSM Tree architectures, new writes

are written to an in-memory memtable. These memtables are flushed, when they fill
up, into immutable sorted strings table (SST) files.

Rockset designed compute-compute separation to be real time by replicating the
in-memory state of the memtable in the RocksDB “leader” performing the ingestion,
indexing and compaction into the memtables in the RocksDB “follower” instances

https://en.wikipedia.org/wiki/Log-structured_merge-tree

that serve queries. This makes fresh data available in single-digit milliseconds
across all RocksDB instances that are following the “leader” instance. This
implementation means that the compute-intensive ingestion work of indexing and
compaction happens only on the leader, avoiding redundant compute expense in
the followers.

Leader/follower replication
Data stream AL App AL App makes fresh data available in all
RocksDB instances

Ingest
and
indexing

" Optional *,
*. search

e Replication stream sends
data and metadata changes

--44-1- e Applying memtable updates
takes 6x to 10x less CPU
RocksDB

— || || than ingest
__— _I e Followers don’t run
are .
hot storage SSD | compaction

7

A detailed diagram of compute-compute separation. Updates to the “leader”
memtable are immediately made available to “follower” memtables, enabling
follower virtual instances to access the latest data. The architecture of
compute-compute separation designates the leader to run ingestion, indexing and

compaction.

Compute-compute separation makes it possible for Rockset to support concurrent
indexing and search. Compute-compute separation also ensures that users can
keep their vector indexes’ recall high by retraining them on the ingester instance
when needed without interfering with search workloads.

It's well known that periodically retraining the index can be computationally
expensive. In many systems, the reindexing and search operations happen on the
same cluster. This introduces the potential for indexing to negatively interfere with

the search performance of the application. With compute-compute separation,
Rockset avoids this issue for predictable performance at any scale.

Multi-tenant design

Rockset allows users to partition records in an index by tenant. At collection creation
time, users can specify tenant partitioning field(s) such as tenant_id. Rockset
stores the tenant (128 bit hash of all tenant partitioning fields) at the head of the
search index key so the search index can use the information to reduce the search
space significantly. For vector search, this means that although a vector index is built
across all records, the search space at query time is reduced dramatically by
filtering on the tenant id field, speeding up search performance.

With Rockset’'s compute-storage separation, Rockset users can create multiple
virtual instances, or isolated compute and memory resources, per tenant or for

multiple tenants to ensure predictable query performance at scale.

Additional Indexes

Search Index Design for BM25

BM25 is a ranking function used to estimate the relevance of documents given terms
from a search query. BM25 leverages a bag-of-words approach by ranking
documents based on the search terms appearing in each document, regardless of
term proximity.

The Rockset Search Index allows for the storage of well-known attributes within the
index itself, computed during the indexing process. In the case of BM25, Rockset
computes and stores the term frequency per document as a well-known attribute,
so for each term-document pair in the search index, Rockset tracks the frequency of
the term within the document.

Rockset also tracks two values at the collection level: the total number of documents
and the running sum of the total document length, which allows us to easily
compute the average document length. Given the use of well-known attributes and

https://rockset.com/blog/separate-compute-storage-rocksdb/
https://en.wikipedia.org/wiki/Okapi_BM25

collection-level metadata, Rockset can calculate BM25 scores for individual

documents with minimal computational overhead.

Unset

BM25(
terms,
field

) [OPTION(k=1.6)] [OPTION(b=0.75]

Input Documents

“Prod”

“descr.fast”

“descr.comfy”

“descr.well”

\\docs 44

“length”

Search Index

“descr.comfy”
stores the
document and
frequency
attribute

Rockset stores the term frequency per document in the search index as a

Search Index Design for Geo Search

term-document pair.

Rockset’s search index also supports indexing geography values. Typical geospatial

queries are not usually searching for exactly one point, but for some compact region

of points, like all points within a given distance, or within a polygon. To serve this

need, Rockset repurposed the search index to work differently for geographies. First,

Rocksert partitions the surface of the earth into a hierarchical grid of roughly square

cells using the S2 library. For each point in a collection, Rockset adds an entry in the
search index for each cell which contains it. Since these cells form a hierarchy, a
single point is contained by many cells- its immediate parent, and all of that cell's
ancestors. This increases space usage, but pays off with better query performance.

Columnar Store for Analytics

The column index stores all values for a particular column contiguously on storage. A
query can efficiently fetch exactly the columns that it needs, which makes it ideal for
analytical queries over wide datasets. Additionally, column-oriented storage has
better compression ratios. Values within one column are usually similar to each
other, and similar values compress really well when stored together. There are some
advanced techniques that make compression even better, like dictionary
compression or run-length encoding.

Row Store for Lookups

The row index refers to storing data in row orientation, which is fairly standard in
databases. It optimizes for row lookups and is how Postgres and MySQL are
organized.

Ranking Design

Ranking with Reciprocal Rank Fusion

Reciprocal Rank Fusion (RRF) provides an effective method for combining document
rankings from multiple search modalities like vector search, text search, and
geospatial search. RRF sorts documents according to a proven scoring formula and
reduces the need to normalize scores across different search modalities.

The formula balances contributions from various search modalities, allowing for a
more nuanced and comprehensive ranking of documents across different search
engines. Rockset achieves this with a new SQL function:

Unset
RANK_FUSTION(
score [DESC|ASC] [WEIGHT weight],

http://s2geometry.io/

) [OPTION(k=60)]

Rockset's RANK_FUSION function executes in memory during the last stage of the
query execution process.

Ranking with Linear Combination

Linear combinations provide a ranking mechanism by summing outputs from
different search modalities with constant coefficient weightings.

Unset

(:alpha * scorel) + ((1-:alpha) * score2)

By adjusting the coefficient, users can fine tune the influence of each modality,
enabling a flexible and customizable ranking system. Linear combinations are
typically used to combine scores across search modalities with normalized scores as
the output.

Hybrid Search Queries

Vector search and text search

Vector search finds similar items but can miss relevant keywords, that's why many
applications use a hybrid approach, combining vector search and text search, to
improve the relevancy of results.

Rockset supports hybrid vector and text search. BM25 scores documents based on
the frequency and distribution of query terms, providing a measure of text relevance.
Both BM25 and APPROX_DOT_PRODUCT return normalized scores, allowing users to
combine the outputs using a linear combination to create a hybrid score.

Unset

SELECT
tweet,
:alpha * APPROX_DOT_PRODUCT(:search_embedding, tweet_embedding)
+ (1 - :alpha) * BM25(:search_terms, tweets_tokens)
as hybrid_score
FROM
twitter t
ORDER BY
hybrid_score DESC
LIMIT
10

A SQL example that combines the scores from vector search and text search using
an alpha parameter to weigh the contributions.

EXPLAIN plan:

Unset
select tweet:$23, hybrid_score:$25, text_score:$18
sort $50 desc limit 10
project $25=(add_(multiply_(©.7, $18), multiply_(0.3, $22)))
hash inner join on ($21 = $19)
reshuffle on_aggregators(1)
add fields on commons.twitter: fields($21=_id, $23=tweet)
index similarity search on commons.twitter: fields(),
§22=kInnerProduct(simidx:rrn:simidx:usw2a1l:cc937023-8b
4f-4879-a279-7c24e00c1222, [1.50781, 0.230469,
0.0649414, 0.0397949, -0.0228271, -0.291016, -0.458984,
-2.07424e-05, -0.196289, 0.296875, -0.503906, ...,
9.0515137, -0.15332, -8.275391]), query(all)

reshuffle on_aggregators(1)
$18=bm25 operator with avgdl on $11 for query
['college', 'basketball’'] on tweet_tokenized, $19=_id
project $11=divide_($10, $5)
aggregate sink on (): $10=sum($9) hash ($8) grouping
(87)

aggregate source on (): $9=sum($6) hash ($8) grouping
(87)
document length lookup $6 ON
commons.twitter:tweet_tokenized
aggregate sink on (): $5=sum($4) hash ($3) grouping ($2)
aggregate source on (): $4=sum($81) hash ($3) grouping

(S2)
document count lookup $1 ON
commons.twitter:tweet_tokenized

BM25 calculates the relevance score based on text search. APPROX DOT PRODUCT
computes the similarity score based on vector search. The hybrid_score combines
these scores with an alpha parameter to balance their contributions.

By adjusting the alpha parameter, users can control the influence of text relevance
and vector similarity in the search results. The hybrid approach enhances the search
by leveraging the strengths of both text and vector search methodologies.

Vector search and metadata filtering

Rockset supports both exact nearest neighbor (KNN) and approximate nearest
neighbor (ANN) searches. The distance between embeddings can be calculated
using built-in distance functions EUCLIDEAN DIST, DOT_PRODUCT, COSINE SIM. TO
orchestrate this in SQL, Rockset employs the ORDER BY similarity DESC clause to
sort results by similarity metrics and the LIMIT k clause to restrict the output to the
top k results. Metadata filtering is integrated using the WHERE clause to impose

specific constraints.

Unset
SELECT
tweet,
APPROX_DOT_PRODUCT (:search_embedding, tweet_embedding) as similarity
FROM
twitter t
WHERE

t.user.friends_count > 1000
AND t.user.verified_type = 'blue’
AND t.place.country_code = 'US'
ORDER BY
similarity DESC
LIMIT
10

Query of vector search with metadata filtering. The query identifies tweets that align
with defined user profiles and geographical locations.

In this example, the query targets tweets from verified users in the United States with
over 1000 friends, highlighting popular profiles. The APPROX_DOT_PRODUCT function
computes the similarity between tweet embeddings in the collection and an
embedded search query.

Rockset's cost-based optimizer selects the most efficient approach, choosing
between pre-filtering and single-stage filtering. An EXPLAIN plan for the query details
the chosen execution sequence, demonstrating the applied filtering strategy:

Unset
select tweet:$5, similarity:$4
reshuffle ordered by $4 desc on_aggregators(1) limit 10
add fields on commons.twitter: fields(S5=tweet) [estimated rows:
160]
index similarity search on commons.twitter:

fields(S1=place.country_code, $2=user.friends_count,
$3=user.verified_type),
S4=kInnerProduct(simidx:rrn:simidx:usw2al:cc937023-8b4f-4879-a2
79-7c24e00c1222, [1.50781, 0.230469, 0.0649414, 0.0397949,
-0.0228271, -0.291016, -0.458984, -2.07424e-05, -0.196289,
0.296875, -0.503906, ..., 0.8515137, -0.15332, -0.275391]),
query(and($81:string['US'], $2:float(1000.0,inf], int(1000,max],
S$3:string['blue'])) limit 10 [estimated rows: 160]

A portion of the EXPLAIN plan for the vector search and metadata filtering query.

The similarity search index is selected on four fields: place.country code,
user.friends_count, user.verified type, dnd kInnerProduct. The fields for
metadata filtering, place.country code, user.friends_count and
user.verified type, are applied before calculating the inner product. Given the
selectivity of the filters, the cost-based query optimizer leveraged the pre-filtering
strategy.

Vector search and geospatial search

Vector search can be enhanced with geospatial filtering or geospatial ranking.
Searches across geospatial data are implemented using Rockset’s built-in
geographic functions including: ST_DISTANCE, ST CONTAINS and ST INTERSECTS.

Geographic functions are integrated into the WHERE clause of a SQL query to refine
searches based on geographical proximity or containment.

Unset

SELECT
tweet,
APPROX_DOT_PRODUCT (:search_embedding, tweet_embedding) as similarity
FROM
twitter t
WHERE
ST_DISTANCE(
ST_GEOGPOINT(t.coordinates.lat, t.coordinates.long),
ST_GEOGPOINT(:search_latitude, :search_longitude)
) < :distanceMeters
ORDER BY
similarity DESC
LIMIT
10

A query with vector search and geospatial search. The query identifies similar
tweets within a defined geospatial location. The ST DISTANCE filters tweets within a
specified radius from a given point.

EXPLAIN plan:

Unset
select tweet:$4, similarity:$1
reshuffle ordered by $1 desc on_aggregators(1) limit 1@
add fields on commons.twitter: fields(S4=tweet) [estimated rows: 0]
limit 10 ordered by $1 desc
filter on (st_distance(st_geogpoint($2, $3), POINT(-142.433
-57.6749)) < 16100) [estimated rows: 0]
add fields on commons.twitter: fields($2=coordinates.lat,
S3=coordinates.long) [estimated rows: 0]
index similarity search on commons.twitter: fields(),
S$1=kInnerProduct(simidx:rrn:simidx:usw2al:cc937023-8b4f-4879-a2
79-7c24e00c1222, [1.50781, 0.230469, 0.0649414, 0.0397949,
-0.0228271, -0.291016, -0.458984, -2.07424e-05, -0.196289,
0.296875, -0.503906, ... 0.8515137, -0.15332, -0.275391]),
query(all)

The EXPLAIN plan where coordinates and kInnerProduct are selected from the

similarity search index

In this example, a geospatial constraint is applied to filter out records outside a
defined range. However, a more nuanced approach involved ranking results by
geographic proximity. Reciprocal Rank Fusion (RRF) can be used to combine multiple
ranking signals, such as geographic proximity and vector similarity, into a single
ranking score.

Unset

SELECT
tweet,
RANK_FUSION(
ST_DISTANCE (
ST_GEOGPOINT(t.coordinates.lat, t.coordinates.long),
ST_GEOGPOINT(:search_latitude, :search_longitude)
),
APPROX_DOT_PRODUCT (: search_embedding, tweet_embedding)
) as hybrid_rank
FROM
twitter t
ORDER BY
hybrid_rank DESC

LIMIT
10

A vector search and geographic proximity query using the RFF ranking algorithm.
The hybrid rank considers both the geographic distance and semantic similarity of

tweets in sorting the result set.

EXPLAIN plan:

Unset
select tweet:$2, hybrid_rank:$8
sort $8 desc limit 10
project $8=(add_(divide_(1, add_(60.0, $7)), divide_(1, add_(60.0,
$6))))
window: $6=rank() order: $1 range between: unbounded preceding, ©
window: $7=rank() order: $5 range between: unbounded preceding, ©
reshuffle on_aggregators(1)
project $5=(st_distance(st_geogpoint($3, $4), POINT(-142.433
-57.6749)))
add fields on commons.twitter: fields($2=tweet,
$3=coordinates.latitude, $4=coordinates.longitude)
index similarity search on commons.twitter: fields(),
S1=kInnerProduct(simidx:rrn:simidx:dev-usw2a1:UUID, [1.50781,
0.230469, 0.0649414, ©.0397949, -0.0228271, -0.291016,
-0.458984, -2.07424e-05, -0.196289, 0.296875, -0.503906,
0.0515137, -0.15332, -0.275391]), query(all)

An EXPLAIN plan showing that the ST DISTANCE calculates the geographic distance
and APPROX DOT_PRODUCT computes the similarity score. RANK_FUSION combines
these scores into a single ranking score, hybrid_rank, using the RRF method.

By combining both geospatial and vector search scores, RRF provides a balanced
ranking that takes into account both proximity and semantic similarity, resulting in

more relevant search results.

Conclusion

All search is becoming hybrid search. Rockset is designed for hybrid search at scale.
With its cloud-native architecture, users can build and retrain vector indexes without
impacting live search applications. Rockset has been built from the ground up for
indexing with a Converged Index that provides the flexibility to index vectors, text,
document, geo and time series data and intersects indexes for the most efficient
query execution.

LLMs are rapidly advancing with new skills, abilities and reasoning. Rockset unlocks
the value of these powerful models with its unique focus on hybrid search and ability
to quickly iterate on indexing, retrieval and ranking. Get started with hybrid search on
Rockset today with a free trial and $300 in credits.

https://rockset.com/create/

