
 Rockset Hybrid Search Architecture 

 All vector search is hybrid search 
 All vector search is becoming hybrid search as it drives the most relevant, real-time 
 application experiences. Hybrid search involves incorporating vector search and text 
 search as well as metadata filtering, all in a single query. Hybrid search is used in 
 search, recommendations and retrieval augmented generation (RAG) applications. 

 Vector search is a way to find related text, images or videos that have similar 
 characteristics using machine learning models. While vector embeddings using 
 large language models (LLMs) have rapidly advanced and become widely 
 accessible, the generalizable nature of these models means that they are rarely 
 used in isolation in production applications. There are several reasons for this 
 including: 

 ●  Domain awareness:  Generalizable models have limitations  around domain 
 awareness; they are not familiar with terminology used by an internal team or 
 industry. Text search is helpful at finding specific terminology. 

 ●  Filters:  Similarity search is designed to find items  that are contextually alike. It 
 is not designed for exact filters such as a delivery application that needs to 
 find restaurants that only have 4+ stars and are within a 10 mile radius. In this 
 example, metadata can be used to filter application results. 

 ●  Referenceability:  While natural language responses  from LLMs can provide 
 helpful information and summarization, we see users verify the results or dig 
 deeper using source material. 

 ●  Hallucinations:  It’s well known that LLMs are prone  to hallucinations and 
 grounding them with contextual information can improve accuracy. 

 ●  Permissioning:  Enterprises use permissions to ensure that answers are 
 privacy-aware and secure by only giving the LLM access to data accessible to 
 users. 



 Given these reasons, we see vector search intertwined with text search, relational 
 search and geospatial search to drive the most relevant results. There are several 
 investments that vector databases need to make to design for hybrid search: 

 ●  Fast complex search:  Ability to support complex search  across vectors, text, 
 geo, JSON and other data types to provide necessary context. 

 ●  Support for data and index changes:  The processing  of data, retraining of 
 indexes, and performance tuning of search all impact relevancy. Users will 
 iterate on indexing algorithms and model inputs over time, needing to quickly 
 and efficiently make changes. 

 ●  Rankings:  With a hybrid approach, ranking becomes  crucial to AI applications. 
 Incorporating a myriad of ranking algorithms and iterating on rank weighting 
 enables users to quickly enhance application relevance. 

 ●  Real-time updates:  Many applications serve real-time  data at scale to 
 enhance relevance. The ability to update and delete any data, including 
 vectors, in milliseconds while avoiding high reindexing costs makes hybrid 
 search economical. 

 Given the considerations above, Rockset is designed and optimized to ingest data in 
 real time, index different data types and run retrieval and ranking algorithms. 

 A diagram of how to run hybrid search in Rockset. Rockset has indexing, retrieval 
 and ranking built into its vector database. 



 Rockset for hybrid search: Converged Indexing 
 With Rockset, you can build vector indexes without impacting live search 
 applications. Its  Converged Index  provides the flexibility  to index any data, including 
 vectors, text, document, geo and time series data, and apply ranking and scoring 
 using SQL. As a result, users of Rockset build and iterate on hybrid search 
 applications faster to drive the most relevant experiences. Rockset is designed for 
 hybrid search at scale: 

 ●  Update indexes without impacting live search performance 
 ●  Scale out to support multi-tenant applications at high concurrency 
 ●  Ranking is as easy as a SQL ORDER BY clause 

 Architecture of Converged Indexing 

 The Rockset Converged Index applies elements of a vector index, search index, 
 columnar store and row store on top of a key-value store abstraction. Rockset uses a 
 cost-based query optimizer to exploit multiple indexes in parallel for the most 
 efficient query execution. 

 Under the hood, Rockset uses  RocksDB  as its storage layer. Each document stored in 
 the Converged Index maps to many key-value pairs in the key-value store. This 
 allows for fast writes and field-level mutability, supporting real-time updates in 
 milliseconds. 

 Vector index 

 Rockset is designed to be indexing algorithm agnostic and currently supports 
 FAISS-IVF  . FAISS is a vector indexing library open-sourced  by Meta, and IVF is its 
 inverted file index implementation. Rockset builds a distributed FAISS vector index 
 that supports immediate insertion and recall. 

 Rockset stores and indexes vectors alongside text, JSON, geo and time series data 
 within the same collection. Users can create a vector index on any vector field(s). 
 FAISS-IVF uses cell-probe indexing to partition the vector space into Voronoi cells, 
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 each represented by a centroid, which is the central point of the partition. The 
 centroids are computed using a sample of the dataset. Vectors are then assigned to 
 a partition or cell based on their proximity to a centroid. 

 A depiction of the Voronoi cells in FAISS. The centroid is the center of the cell. At 
 search time, cells closest to the search query vector are searched to generate the 

 results. 

 When indexing vectors, Rockset makes use of the columnar index part of its 
 Converged Index to scan all of the vectors, reducing the initial index build time. As 
 new records are added, they are immediately assigned to the cell based on the 
 vector index data distribution.  The vector index also  adds fields to each record to 
 store the closest centroid and the residual, the offset or distance from the closest 
 centroid, for search. 



 Rockset creates a posting list of the centroid vector which is stored in memory. Each 
 record in the collection also contains hidden fields of the centroid and the residual. 

 FAISS-IVF uses a search index as part of its implementation and there are benefits to 
 this approach: it is simpler, it scales better and it can store metadata efficiently. 
 FAISS-IVF has a shorter build time compared to graph algorithms that require layers 
 of building. While FAISS-IVF query runtime is middle of the pack against other 
 algorithmic approaches, it is well designed for reading data from disk. In contrast, 
 graph-based algorithms are fast in memory but traversal begins to fail as the index 
 is read from disk. 



 Source:  ANN benchmarks 

 FAISS-IVF fits well into the existing search index structure of  Rockset’s Converged 
 Index  , making it ideal for hybrid search applications.  Rockset treats centroids as 
 “terms” and maps values within the centroid to their respective documents. The 
 image below shows the concept of posting lists and how it can be used to execute 
 both term and vector searches efficiently. 
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 Posting lists containing each search term or centroid. In this example, segment 9 
 would be searched as it contains the Centroid:1 and the keyword terms. 

 Rockset shards its vector index, training a vector index per-shard. At query time, top K 
 results are retrieved from each shard and then aggregated to produce the search 
 results. Sharding is optimized for latency over throughput, making it ideal for 
 real-time systems at scale. 

 Rockset allows users to balance recall and speed for their AI applications. During 
 similarity index creation, the user can determine the number of centroids, with more 
 centroids leading to faster searches but increased indexing time. Users can specify 
 quantization values, compression values and vector dimensions. During querying, 
 the user can also choose the number of probes and the number of cells to search, 
 balancing speed and search accuracy. 

 Search index 

 Posting lists are fundamental to search database design, and Rockset’s search index 
 uses roaring bitmaps, compressed bitmaps that are optimized for both space and 



 efficiency, to store posting lists. 

 A posting list using roaring bitmaps. This example shows the segments that would 
 be searched intersecting and unionizing the posting lists. 

 Roaring bitmaps are optimized for performing set operations. For example,  SELECT * 
 FROM foo WHERE centroid = 1 AND city = 'San Mateo'  will intersect the posting 
 lists corresponding to  (centroid, 1)  and  (city, 'San  Mateo').  This example 
 demonstrates that Rockset is ideal for hybrid search, where different data types need 
 to be intersected at query time. 

 Iterating through a posting list involves iterating one bitmap at a time, each of which 
 covers a group of document IDs. By processing groups of document IDs across 
 multiple posting lists in parallel, Rockset strikes a sweet spot between  document at a 
 time (DAAT)  and term at a time (TAAT) processing.  Traditionally, DAAT involves 
 iterating one document at a time across multiple posting lists in parallel. TAAT 
 involves reading one full posting list, processing it, passing it as a filter to the next 
 one, and then repeating until all posting lists have been handled. Rockset smooths 
 the gap between the two approaches by processing groups of document IDs at a 
 time. 
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 Rockset utilizes covering indexes as part of its search index design to accelerate 
 vector search performance. Covering indexes offer the ability to store hit data in the 
 search index. As a result, all data required for a query can be fetched solely from the 
 search index, without needing to access row or column store data. Rockset stores 
 residuals in the covering index of the centroid entries in the search index so vector 
 search is handled with just one index lookup. 

 With covering indexes, posting lists now contain document IDs and  (field, value) 
 pairs for covered fields. Going back to the previous example, searching for 
 (centroid, 1)  will now return  [(doc ID 0, (city, 'San  Mateo'), (region, 
 'US')), (doc ID 1, (city, 'Frankfurt'), (region, 'EU')), ...]  . 

 A covering Index for the “centroid” contains additional information, including the 
 “city” and “region”, avoiding a lookup step for the added fields during query 

 execution. 

 Rockset’s search index is optimized for join queries, making it easy to combine 
 multiple collections or datasets together. For hash joins and nested loop joins, if the 
 data access for either side of the join is selective, the search index will be used to 
 fetch the rows for that side of the join before applying the join operation. In addition, 
 lookup join is a join strategy that leverages the search index in a novel way. For 
 example, consider the join  A INNER JOIN B ON A.x =  B.x WHERE B.y = 5  . If the 



 predicate  B.y = 5  is highly selective and causes the right side of the join to contain 
 only a few (< 100) rows, Rockset uses a lookup join to transfer the ~100 values of  B.x 
 to the compute nodes serving the shards of collection A. For each of those values, 
 Rockset uses the search index to perform an efficient lookup for whether a matching 
 A.x  exists, and if so, emit a match for further processing  or returning of the results. 

 Rockset also joins on vector similarity across collections. This involves splitting input 
 from one side into chunks and joining these input vectors against a collection of 
 documents using a batched similarity search. This type of join is useful for isolating 
 documents associated with a concept across collections and can easily be used to 
 support multi-modal models where metadata can be split by modality. 

 Vector Search 

 To fully reap the benefits of the Converged Index, Rockset’s cost-based query 
 optimizer analyzes the query and the underlying data distribution statistics to identify 
 the most efficient data access path. 

 Fundamentally, there are two data access paths supported in Rockset for  vector 
 search with metadata filtering  : 

 ●  Pre-filter: Apply filters and then run an exact nearest neighbor search to return 
 the K nearest neighbors to a query vector. 

 ●  Single-stage filter: Run an approximate nearest neighbor search and iterate 
 through the centroids until K nearest neighbors are returned. 

 For a given search, Rockset’s cost-based optimizer explores the query plans and 
 chooses the plan with the lowest cost. Choosing the optimal data access path 
 predominantly depends on estimating the selectivity of the data access. For 
 example, a vector search query “Give me 5 nearest neighbors where <filter>?” would 
 need to weigh the different filters and their selectivity, then reorder, plan and 
 optimize the search. 

https://rockset.com/blog/vector-search-scale/
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 The query profiler in Rockset leveraging both the vector index and search index for 
 execution. 



 A highly selective query is a query that fetches a small percentage of rows from the 
 underlying collection. In this scenario, it would be more cost-efficient to pre-filter and 
 apply the filters first before running an exact nearest neighbor search. In this 
 situation, Rockset automatically leverages only the search index to return the results. 

 If the filter is not highly selective, Rockset will use single-stage filtering. It will iterate 
 through the closest centroids to the query until it finds the K nearest neighbors. In this 
 scenario, Rockset’s query optimizer asks FAISS for the closest centroids to the query 
 embedding using the specified number of probes for guidance. Probes determine 
 the upper limit of centroids considered during the search process. Under the hood, 
 Rockset applies the centroids as additional query filters to the WHERE clause. 

 An example of how Rockset rewrites a vector search query. Rockset’s query 
 optimizer asks FAISS for the closest centroids to the query embedding. It orders by 

 the distance between the query and the stored vectors. 



 Single-stage filtering is more computationally efficient than a post-filtering 
 operation where all centroids are scanned before filters are applied. Rockset does 
 not support post-filtering operations for this reason. 

 Rockset collects statistics on the data distribution for a collection which are 
 maintained continuously, and these are used to estimate the selectivity of data 
 accesses needed in a hybrid search query. 

 Real-time Updates 

 Rockset supports real-time updates to vectors and metadata. Rockset is mutable at 
 an individual field level so an update to the vector on a single record will result in an 
 instruction to FAISS-IVF to generate a new centroid and residual. When this occurs, 
 Rockset only reindexes the centroid and the residual for the updated vector field, 
 allowing this operation to occur in less than 200 milliseconds. 

 Real-time updates in Rockset. When a field value is updated, in this case the vector 
 embedding for Edwin Jarvis, only the individual embedding field is updated rather 
 than the entire document. Rockset instructs FAISS-IVF to generate a new centroid 

 and the residual. These are hidden fields that are used in vector search. 

 To support real-time updates, Rockset’s Converged Index separates the logical 
 search index from its physical representation as a key-value store, which is unique in 
 search database design. Indexes are mutable because each key refers to a 



 document fragment, meaning that a user can update a single vector or metadata 
 field in the document without triggering a reindexing of the entire document. 

 Traditional search databases tend to suffer from reindexing storms because even if 
 a single vector or metadata is updated in a large document, the entire document 
 must be reindexed. 

 Tiered Storage of Indexes 

 Rockset takes a disk-based approach to indexing. Rockset shards its indexes, 
 applying a local index to each shard stored on SSDs. Once the local index is created, 
 it is uploaded to S3 for durability. For vector search, Rockset only keeps the posting 
 list in memory, greatly reducing the memory footprint for better price performance. 

 Rockset’s tiered storage which makes use of cloud storage for performance and 
 durability. 

 Isolation of resources for indexing and search 

 Rockset’s  compute-compute separation  ensures that  the continuous streaming and 
 indexing of vectors will not affect search performance. In Rockset’s architecture, a 
 virtual instance represents a cluster of compute nodes. Virtual instances can  be 
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 used to either index data and/or handle query workloads. Multiple virtual instances 
 can simultaneously access the same dataset, eliminating the need for multiple 
 replicas of data. 

 A high level overview of compute-compute separation. Shows that virtual instances 
 can be used to isolate ingestion and indexing from query processing. 

 Rockset is designed so virtual instances that perform ingestion tasks are completely 
 isolated from those that perform query processing. Thus, the data ingestion, 
 transformation and indexing code paths work independently from the query parsing, 
 optimization and execution in Rockset. 

 For data to be shared across multiple compute units in real time, Rockset uses 
 RocksDB. In addition to being a popular key-value storage engine, it’s also a popular 
 Log Structured Merge (LSM) tree  storage engine. In  LSM Tree architectures, new writes 
 are written to an in-memory memtable. These memtables are flushed, when they fill 
 up, into immutable sorted strings table (SST) files. 

 Rockset designed compute-compute separation to be real time by replicating the 
 in-memory state of the memtable in the RocksDB “leader” performing the ingestion, 
 indexing and compaction into the memtables in the RocksDB “follower” instances 
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 that serve queries. This makes fresh data available in single-digit milliseconds 
 across all RocksDB instances that are following the “leader” instance. This 
 implementation means that the compute-intensive ingestion work of indexing and 
 compaction happens only on the leader, avoiding redundant compute expense in 
 the followers. 

 A detailed diagram of compute-compute separation. Updates to the “leader” 
 memtable are immediately made available to “follower” memtables, enabling 

 follower virtual instances to access the latest data. The architecture of 
 compute-compute separation designates the leader to run ingestion, indexing and 

 compaction. 

 Compute-compute separation makes it possible for Rockset to support concurrent 
 indexing and search. Compute-compute separation also ensures that users can 
 keep their vector indexes’ recall high by retraining them on the ingester instance 
 when needed without interfering with search workloads. 

 It’s well known that periodically retraining the index can be computationally 
 expensive. In many systems, the reindexing and search operations happen on the 
 same cluster. This introduces the potential for indexing to negatively interfere with 



 the search performance of the application. With compute-compute separation, 
 Rockset avoids this issue for predictable performance at any scale. 

 Multi-tenant design 

 Rockset allows users to partition records in an index by tenant. At collection creation 
 time, users can specify tenant partitioning field(s) such as  tenant_id.  Rockset 
 stores the tenant (128 bit hash of all tenant partitioning fields) at the head of the 
 search index key so the search index can use the information to reduce the search 
 space significantly. For vector search, this means that although a vector index is built 
 across all records, the search space at  query time is reduced dramatically by 
 filtering on the  tenant_id  field, speeding up search  performance. 

 With Rockset’s  compute-storage separation  , Rockset  users can create multiple 
 virtual instances, or isolated compute and memory resources, per tenant or for 
 multiple tenants to ensure predictable query performance at scale. 

 Additional Indexes 

 Search Index Design for BM25 

 BM25  is a ranking function used to estimate the relevance  of documents given terms 
 from a search query. BM25 leverages a bag-of-words approach by ranking 
 documents based on the search terms appearing in each document, regardless of 
 term proximity. 

 The Rockset Search Index allows for the storage of well-known attributes within the 
 index itself, computed during the indexing process. In the case of BM25, Rockset 
 computes and stores the term frequency per document as a well-known attribute, 
 so for each term-document pair in the search index, Rockset tracks the frequency of 
 the term within the document. 

 Rockset also tracks two values at the collection level: the total number of documents 
 and the running sum of the total document length, which allows us to easily 
 compute the average document length. Given the use of well-known attributes and 
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 collection-level metadata, Rockset can calculate BM25 scores for individual 
 documents with minimal computational overhead. 

 BM25( 
 terms, 
 field 

 ) [OPTION(k=1.6)] [OPTION(b=0.75] 

 Rockset stores the term frequency per document in the search index as a 
 term-document pair. 

 Search Index Design for Geo Search 

 Rockset’s search index also supports indexing geography values. Typical geospatial 
 queries are not usually searching for exactly one point, but for some compact region 
 of points, like all points within a given distance, or within a polygon. To serve this 
 need, Rockset repurposed the search index to work differently for geographies. First, 
 Rocksert partitions the surface of the earth into a hierarchical grid of roughly square 
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 cells using the  S2 library  . For each point in a collection, Rockset adds an entry in the 
 search index for each cell which contains it. Since these cells form a hierarchy, a 
 single point is contained by many cells- its immediate parent, and all of that cell’s 
 ancestors. This increases space usage, but pays off with better query performance. 

 Columnar Store for Analytics 

 The column index stores all values for a particular column contiguously on storage. A 
 query can efficiently fetch exactly the columns that it needs, which makes it ideal for 
 analytical queries over wide datasets. Additionally, column-oriented storage has 
 better compression ratios. Values within one column are usually similar to each 
 other, and similar values compress really well when stored together. There are some 
 advanced techniques that make compression even better, like dictionary 
 compression or run-length encoding. 

 Row Store for Lookups 

 The row index refers to storing data in row orientation, which is fairly standard in 
 databases. It optimizes for row lookups and is how Postgres and MySQL are 
 organized. 

 Ranking Design 

 Ranking with Reciprocal Rank Fusion 

 Reciprocal Rank Fusion (RRF) provides an effective method for combining document 
 rankings from multiple search modalities like vector search, text search, and 
 geospatial search. RRF sorts documents according to a proven scoring formula and 
 reduces the need to normalize scores across different search modalities. 

 The formula balances contributions from various search modalities, allowing for a 
 more nuanced and comprehensive ranking of documents across different search 
 engines. Rockset achieves this with a new SQL function: 

 RANK_FUSION( 
 score [DESC|ASC] [WEIGHT weight], 

http://s2geometry.io/


 Unset 

 ... 
 ) [OPTION(k=60)] 

 Rockset’s RANK_FUSION function executes in memory during the last stage of the 
 query execution process. 

 Ranking with Linear Combination 

 Linear combinations provide a ranking mechanism by summing outputs from 
 different search modalities with constant coefficient weightings. 

 (:alpha * score1) + ((1-:alpha) * score2) 

 By adjusting the coefficient, users can fine tune the influence of each modality, 
 enabling a flexible and customizable ranking system. Linear combinations are 
 typically used to combine scores across search modalities with normalized scores as 
 the output. 

 Hybrid Search Queries 

 Vector search and text search 

 Vector search finds similar items but can miss relevant keywords, that’s why many 
 applications use a hybrid approach, combining vector search and text search, to 
 improve the relevancy of results. 

 Rockset supports hybrid vector and text search.  BM25  scores documents based on 
 the frequency and distribution of query terms, providing a measure of text relevance. 
 Both  BM25  and  APPROX_DOT_PRODUCT  return normalized  scores, allowing users to 
 combine the outputs using a linear combination to create a hybrid score. 
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 SELECT 
 tweet, 
 :alpha * APPROX_DOT_PRODUCT(:search_embedding, tweet_embedding) 

 + (1 - :alpha) * BM25(:search_terms, tweets_tokens) 
 as hybrid_score 

 FROM 
 twitter t 

 ORDER BY 
 hybrid_score DESC 

 LIMIT 
 10 

 A SQL example that combines the scores from vector search and text search using 
 an  alpha  parameter to weigh the contributions. 

 EXPLAIN  plan: 

 select  tweet:$23,  hybrid_score:$25,  text_score:$18 
 sort  $50  desc  limit  10 
 project  $25=(add_(multiply_(0.7,  $18),  multiply_(0.3,  $22))) 
 hash  inner  join  on  ($21  =  $19) 
 reshuffle  on_aggregators(1) 
 add fields on commons.twitter: fields($21=_id, $23=tweet) 

 index similarity search on commons.twitter: fields(), 
 $22=kInnerProduct(simidx:rrn:simidx:usw2a1:cc937023-8b 

 4f-4879-a279-7c24e00c1222, [1.50781, 0.230469, 
 0.0649414, 0.0397949, -0.0228271, -0.291016, -0.458984, 
 -2.07424e-05, -0.196289, 0.296875, -0.503906, ..., 
 0.0515137, -0.15332, -0.275391]), query(all) 

 reshuffle  on_aggregators(1) 
 $18=bm25  operator  with  avgdl  on  $11  for  query 
 ['college','basketball']  on  tweet_tokenized,  $19=_id 

 project  $11=divide_($10,  $5) 
 aggregate  sink  on  ():  $10=sum($9)  hash  ($8)  grouping 

 ($7) 
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 aggregate  source  on  ():  $9=sum($6)  hash  ($8)  grouping 
 ($7) 

 document  length  lookup  $6  ON 
 commons.twitter:tweet_tokenized 

 aggregate  sink  on  ():  $5=sum($4)  hash  ($3)  grouping  ($2) 
 aggregate  source  on  ():  $4=sum($1)  hash  ($3)  grouping 

 ($2) 
 document  count  lookup  $1  ON 

 commons.twitter:tweet_tokenized 

 BM25  calculates the relevance score based on text  search.  APPROX_DOT_PRODUCT 
 computes the similarity score based on vector search. The  hybrid_score  combines 

 these scores with an  alpha  parameter to balance their  contributions. 

 By adjusting the  alpha  parameter, users can control  the influence of text relevance 
 and vector similarity in the search results. The hybrid approach enhances the search 
 by leveraging the strengths of both text and vector search methodologies. 

 Vector search and metadata filtering 

 Rockset supports both exact nearest neighbor (KNN) and approximate nearest 
 neighbor (ANN) searches. The distance between embeddings can be calculated 
 using built-in distance functions  EUCLIDEAN_DIST  ,  DOT_PRODUCT  ,  COSINE_SIM  . To 
 orchestrate this in SQL, Rockset employs the  ORDER  BY similarity DESC  clause to 
 sort results by similarity metrics and the  LIMIT k  clause to restrict the output to the 
 top k results. Metadata filtering is integrated using the  WHERE  clause to impose 
 specific constraints. 

 SELECT 
 tweet, 
 APPROX_DOT_PRODUCT(:search_embedding,  tweet_embedding)  as  similarity 

 FROM 
 twitter  t 

 WHERE 
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 t.user.friends_count  >  1000 
 AND  t.user.verified_type  =  'blue' 
 AND  t.place.country_code  =  'US' 

 ORDER  BY 
 similarity  DESC 

 LIMIT 
 10 

 Query of vector search with metadata filtering. The query identifies tweets that align 
 with defined user profiles and geographical locations. 

 In this example, the query targets tweets from verified users in the United States with 
 over 1000 friends, highlighting popular profiles. The  APPROX_DOT_PRODUCT  function 
 computes the similarity between tweet embeddings in the collection and an 
 embedded search query. 

 Rockset's cost-based optimizer selects the most efficient approach, choosing 
 between pre-filtering and single-stage filtering. An  EXPLAIN  plan for the query details 
 the chosen execution sequence, demonstrating the applied filtering strategy: 

 select tweet:$5, similarity:$4 
 reshuffle ordered by $4 desc on_aggregators(1) limit 10 
 add fields on commons.twitter: fields($5=tweet) [estimated rows: 

 160] 
 index similarity search on commons.twitter: 

 fields($1=place.country_code, $2=user.friends_count, 
 $3=user.verified_type), 
 $4=kInnerProduct(simidx:rrn:simidx:usw2a1:cc937023-8b4f-4879-a2 
 79-7c24e00c1222, [1.50781, 0.230469, 0.0649414, 0.0397949, 
 -0.0228271, -0.291016, -0.458984, -2.07424e-05, -0.196289, 
 0.296875, -0.503906, ..., 0.0515137, -0.15332, -0.275391]), 
 query(and($1:string['US'], $2:float(1000.0,inf], int(1000,max], 
 $3:string['blue'])) limit 10 [estimated rows: 160] 

 A portion of the EXPLAIN plan for the vector search and metadata filtering query. 
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 The similarity search index is selected on four fields:  place.country_code  , 
 user.friends_count  ,  user.verified_type  , and  kInnerProduct  .  The fields for 
 metadata filtering,  place.country_code  ,  user.friends_count  and 
 user.verified_type  ,  are applied before calculating  the inner product. Given the 
 selectivity of the filters, the cost-based query optimizer leveraged the pre-filtering 
 strategy. 

 Vector search and geospatial search 

 Vector search can be enhanced with geospatial filtering or geospatial ranking. 
 Searches across geospatial data are implemented using Rockset’s built-in 
 geographic functions including:  ST_DISTANCE  ,  ST_CONTAINS  and  ST_INTERSECTS  . 

 Geographic functions are integrated into the  WHERE  clause of a SQL query to refine 
 searches based on geographical proximity or containment. 

 SELECT 
 tweet, 
 APPROX_DOT_PRODUCT(:search_embedding,  tweet_embedding)  as  similarity 

 FROM 
 twitter  t 

 WHERE 
 ST_DISTANCE( 

 ST_GEOGPOINT(t.coordinates.lat, t.coordinates.long), 
 ST_GEOGPOINT(:search_latitude, :search_longitude) 

 ) < :distanceMeters 
 ORDER  BY 

 similarity  DESC 
 LIMIT 

 10 

 A query with vector search and geospatial search. The query identifies similar 
 tweets within a defined geospatial location. The  ST_DISTANCE  filters tweets within a 

 specified radius from a given point. 

 EXPLAIN  plan: 
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 select tweet:$4, similarity:$1 
 reshuffle ordered by $1 desc on_aggregators(1) limit 10 
 add fields on commons.twitter: fields($4=tweet) [estimated rows: 0] 
 limit 10 ordered by $1 desc 
 filter on (st_distance(st_geogpoint($2, $3), POINT(-142.433 
 -57.6749)) < 16100) [estimated rows: 0] 
 add fields on commons.twitter: fields($2=coordinates.lat, 
 $3=coordinates.long) [estimated rows: 0] 

 index similarity search on commons.twitter: fields(), 
 $1=kInnerProduct(simidx:rrn:simidx:usw2a1:cc937023-8b4f-4879-a2 
 79-7c24e00c1222, [1.50781, 0.230469, 0.0649414, 0.0397949, 
 -0.0228271, -0.291016, -0.458984, -2.07424e-05, -0.196289, 
 0.296875, -0.503906, ... 0.0515137, -0.15332, -0.275391]), 
 query(all) 

 The EXPLAIN plan where  coordinates  and  kInnerProduct  are selected from the 
 similarity search  index 

 In this example, a geospatial constraint is applied to filter out records outside a 
 defined range. However, a more nuanced approach involved ranking results by 
 geographic proximity. Reciprocal Rank Fusion (RRF) can be used to combine multiple 
 ranking signals, such as geographic proximity and vector similarity, into a single 
 ranking score. 

 SELECT 
 tweet, 
 RANK_FUSION( 

 ST_DISTANCE( 
 ST_GEOGPOINT(t.coordinates.lat, t.coordinates.long), 
 ST_GEOGPOINT(:search_latitude, :search_longitude) 

 ), 
 APPROX_DOT_PRODUCT(:search_embedding, tweet_embedding) 

 ) as hybrid_rank 
 FROM 

 twitter t 
 ORDER BY 

 hybrid_rank DESC 
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 LIMIT 
 10 

 A vector search and geographic proximity query using the RFF ranking algorithm. 
 The hybrid rank considers both the geographic distance and semantic similarity of 

 tweets in sorting the result set. 

 EXPLAIN  plan: 

 select tweet:$2, hybrid_rank:$8 
 sort $8 desc limit 10 
 project $8=(add_(divide_(1, add_(60.0, $7)), divide_(1, add_(60.0, 

 $6)))) 
 window: $6=rank() order: $1 range between: unbounded preceding, 0 
 window: $7=rank() order: $5 range between: unbounded preceding, 0 
 reshuffle on_aggregators(1) 
 project $5=(st_distance(st_geogpoint($3, $4), POINT(-142.433 
 -57.6749))) 

 add fields on commons.twitter: fields($2=tweet, 
 $3=coordinates.latitude, $4=coordinates.longitude) 

 index similarity search on commons.twitter: fields(), 
 $1=kInnerProduct(simidx:rrn:simidx:dev-usw2a1:UUID, [1.50781, 
 0.230469, 0.0649414, 0.0397949, -0.0228271, -0.291016, 
 -0.458984, -2.07424e-05, -0.196289, 0.296875, -0.503906, ... 
 0.0515137, -0.15332, -0.275391]), query(all) 

 An EXPLAIN plan showing that the  ST_DISTANCE  calculates  the geographic distance 
 and  APPROX_DOT_PRODUCT  computes the similarity score.  RANK_FUSION  combines 

 these scores into a single ranking score,  hybrid_rank  ,  using the RRF method. 

 By combining both geospatial and vector search scores, RRF provides a balanced 
 ranking that takes into account both proximity and semantic similarity, resulting in 
 more relevant search results. 



 Conclusion 
 All search is becoming hybrid search. Rockset is designed for hybrid search at scale. 
 With its cloud-native architecture, users can build and retrain vector indexes without 
 impacting live search applications. Rockset has been built from the ground up for 
 indexing with a Converged Index that provides the flexibility to index vectors, text, 
 document, geo and time series data and intersects indexes for the most efficient 
 query execution. 

 LLMs are rapidly advancing with new skills, abilities and reasoning. Rockset unlocks 
 the value of these powerful models with its unique focus on hybrid search and ability 
 to quickly iterate on indexing, retrieval and ranking. Get started with hybrid search on 
 Rockset today with a  free trial and $300 in credits  . 

https://rockset.com/create/

