Apache Pinot vs SingleStore
Compare and contrast Apache Pinot and SingleStore by architecture, ingestion, queries, performance, and scalability.
Apache Pinot vs SingleStore Architecture
Pinot is a real-time distributed OLAP datastore that ingests both batch and streaming data. It has a distributed systems architecture that scales both horizontally and vertically, but unlike alternative OLAP databases, it does not decouple storage and compute. It supports both self-managed and PaaS options.
SingleStore is a proprietary distributed relational database that handles both transactional and analytical workloads. It relies on memory and a persistent cache to deliver low latency queries. For longer term data retention, SingleStore Cloud separates compute from cloud object storage. SingleStore Cloud pricing is based on compute and storage usage.
Apache Pinot vs SingleStore Ingestion
Pinot supports high-performance ingest from streaming data sources. Each table is either offline or real time. Real-time tables have a smaller retention period and scale based on ingestion rate while offline tables have a larger retention period and scale based on the amount of data. In order to persistently store the generated segments that make up a table, you will need to change controller and server configs to add deep storage.
SingleStore has integrations to common data lakes and streams. With SingleStore pipelines, users can perform common data transformations during the ingestion process. SingleStore provides limited support for semi-structured data with its JSON column type. Many users structure data prior to ingestion for optimal query performance.
Apache Pinot vs SingleStore Performance
Like its competitors, Pinot can achieve sub-second query latency at high concurrency. However, this level of performance requires tuning, management, and deep expertise. Compared with the open-source version, the PaaS versions of Pinot address some of these issues, but similarly require expertise while making tradeoffs affecting query performance.
SingleStore has two storage formats: a rowstore and a columnar store referred to as universal storage. The columnar store is used for analytical workloads, loading data in batch and relying on memory to achieve seconds of data latency. The columnar store can also execute queries in seconds when the working set is contained in memory. SingleStore provides the ability to configure and manage additional indexes on the data for faster performance.
Apache Pinot vs SingleStore Queries
In Pinot, SQL-like queries are received by brokers and scatter the request between real-time and offline servers. The two tables then process requests, send results back to the broker, and responds with the result. Joins are limited, as is support for UDFs and subqueries, making Pinot more or less useful depending on the use case.
SingleStore supports SQL as its native query language and can perform SQL joins. It is designed for querying structured data with static schemas. Users can create data APIs to execute SQL statements against the database over an HTTP connection. Common SingleStore use cases include business intelligence and analytics, and the database offers a number of integrations to visualization tools.
Apache Pinot vs SingleStore Scalability
Pinot allows for vertical scaling by increasing CPU and memory for each node as well as horizontal scaling by adding additional nodes. Capacity planning is a time-consuming, iterative, and manual task. It involves load testing and tuning across multiple vectors including read QPS, write QPS, number of streaming partitions, daily data size, retention period, types of workloads, number and type of segments, and much more.
SingleStore Cloud can be sized up or down using the UI or the Management API. There is no ability to scale out by increasing or decreasing the leaf and aggregator nodes in the cloud offering. In the self-managed offering, horizontal and vertical scaling can occur by updating command-line arguments or the cluster directly. Horizontal scaling does require rebalancing