Snowflake vs SingleStore
Compare and contrast Snowflake and SingleStore by architecture, ingestion, queries, performance, and scalability.
Snowflake vs SingleStore Architecture
Snowflake is the data warehouse built for the cloud. Snowflake is well-known for separating storage and compute for better price performance. With Snowflake, multiple virtual warehouses can be spun up or down for batch data loading, transformations and queries all on the same shared data.
SingleStore is a proprietary distributed relational database that handles both transactional and analytical workloads. It relies on memory and a persistent cache to deliver low latency queries. For longer term data retention, SingleStore Cloud separates compute from cloud object storage. SingleStore Cloud pricing is based on compute and storage usage.
Snowflake vs SingleStore Ingestion
Snowflake is an immutable data warehouse that is built for batch ingestion and relies heavily on the modern data stack ecosystem for data connectors and transformations. Snowflake has a number of integrations to ETL and ELT solutions including Fivetran, Hevo, Striim and dbt. While Snowflake does have support for semi-structured data in the form of a VARIANT type, it is best to structure the data for optimal query performance.
SingleStore has integrations to common data lakes and streams. With SingleStore pipelines, users can perform common data transformations during the ingestion process. SingleStore provides limited support for semi-structured data with its JSON column type. Many users structure data prior to ingestion for optimal query performance.
Snowflake vs SingleStore Performance
Snowflake is designed for batch analytics with analysts and data scientists infrequently accessing large-scale data for trend analysis. Snowflake, like many data warehouses, is immutable and does not support frequently changing data efficiently. Snowflake uses a columnar store to return aggregations and metrics efficiently, often with query response times in the seconds to minutes on petabytes of data.
SingleStore has two storage formats: a rowstore and a columnar store referred to as universal storage. The columnar store is used for analytical workloads, loading data in batch and relying on memory to achieve seconds of data latency. The columnar store can also execute queries in seconds when the working set is contained in memory. SingleStore provides the ability to configure and manage additional indexes on the data for faster performance.
Snowflake vs SingleStore Queries
Snowflake supports SQL as its native query language and can perform SQL joins. Snowflake for developers introduced a number of developer tools including SQL APIs, UDFs and drivers to support application development. As Snowflake was originally built for business intelligence workloads, it integrates with a number of visualization tools for trend analysis.
SingleStore supports SQL as its native query language and can perform SQL joins. It is designed for querying structured data with static schemas. Users can create data APIs to execute SQL statements against the database over an HTTP connection. Common SingleStore use cases include business intelligence and analytics, and the database offers a number of integrations to visualization tools.
Snowflake vs SingleStore Scalability
Snowflake virtual warehouses can be scaled up for faster queries or scaled out using multi-cluster warehouses to support higher concurrency workloads. Snowflake has shared blob storage that scales automatically and independently.
SingleStore Cloud can be sized up or down using the UI or the Management API. There is no ability to scale out by increasing or decreasing the leaf and aggregator nodes in the cloud offering. In the self-managed offering, horizontal and vertical scaling can occur by updating command-line arguments or the cluster directly. Horizontal scaling does require rebalancing