StarRocks vs Elasticsearch
Compare and contrast StarRocks and Elasticsearch by architecture, ingestion, queries, performance, and scalability.
StarRocks vs Elasticsearch Architecture
StarRocks is a high-performance OLAP database that can be deployed on the cloud or self managed. StarRocks does not separate compute and storage and offers limited options for resource isolation. It offers a robust set of features and high performance but requires considerable expertise to operate and scale.
Elasticsearch is an open-source distributed search engine built on Apache Lucene, a full text search library. Elasticsearch is a distributed system, which means that it is designed to operate across multiple nodes, each responsible for a part of the data.
StarRocks vs Elasticsearch Ingestion
StarRocks ingests data from a variety of sources, including both batch and streaming data. StarRocks can ingest nested JSON data, but enforces type at the column level.
Elasticsearch has a number of integrations as well as a REST API. It is a NoSQL database and natively supports semi-structured data. Transformations typically occur upstream so that data can be modeled for optimal performance before it is indexed in Elasticsearch.
StarRocks vs Elasticsearch Performance
StarRocks was purpose-built for high-performance ingest, low-latency queries, and high concurrency. Optimized performance requires significant manual tuning.
Elasticsearch is a search engine that utilizes an inverted index. Although this approach leads to storage amplification, it also enables low-latency queries that demand less computation. Elasticsearch is tailored to accommodate large scale, append-only data such as logs, events, and metrics. To manage frequently updated data, users often utilize the Bulk API to minimize computational costs and ensure consistent query performance.
StarRocks vs Elasticsearch Queries
StarRocks uses a high-performance vectorized SQL engine, a custom-built cost-based optimizer, and has support for materialized views.
Elasticsearch has its own domain specific language (DSL) based on JSON. Joins are not a first class citizen in Elasticsearch requiring a number of complex and expensive workarounds. Elasticsearch is known for its developer tooling and supports a number of client libraries. Kibana is the visualization layer for Elasticsearch and is frequently used for log analytics and monitoring.
StarRocks vs Elasticsearch Scalability
StarRocks can scale up or out, but its tightly coupled compute and storage scale together for performance. This often results in resource contention and overprovisioning. Scaling StarRocks often requires deep expertise as there are many levels of the system that need to be managed.
Elasticsearch is horizontally scalable and can scale by adding more nodes to the cluster. Its tightly coupled architecture means that compute and storage scale together for performance. This often results in resource contention and overprovisioning. Scaling Elasticsearch often requires deep expertise as there are many levels of the system that need to be managed- the server, operating system, network and software.