ROCKSET

Query Performance Assessment

Ari Ekmekiji

April 2020

This assessment is an inside look into the performance of Rockset,
illustrating real-world numbers for what you can expect when querying data
in Rockset. For an assessment of query performance, we ingested 100 GB
of sample e-commerce booking data and ran a series of queries- 9 in total-
that are representative of what a data application might do.

Performance Objectives

Data applications include customer 360s, fraud detection applications, gaming leaderboards
and loT applications. These applications require highly performant, complex queries on fresh
data. For this assessment, we used sample datasets and queries that reflect the performance
objectives of data applications.

Application or device data is commonly available to developers in datasets that do not have a
fixed schema. For example, JSON data regularly contains deeply nested arrays and objects,
mixed data types, null values and missing fields. Time-consuming schema definition and data
prep is traditionally required before a developer can read the data, elongating the application
development lifecycle. We ingested deeply nested JSON documents with sparse fields for the
assessment without flattening the data ahead of time.

Rockset permits schemaless ingest of data, making it easy to write semi-structured data into the
system. Rockset uses Converged Indexing™ to automatically index every field of the ingested
data in a row-based store, column-based store, and a search index. With indexing, sparse fields
do not require scanning an entire column in order to run computation on the few, non-null rows.
Instead, Rockset identifies those rows directly every time and can process them in a fraction of
the time most databases require.

https://rockset.com/blog/from-schemaless-ingest-to-smart-schema-enabling-sql-on-raw-data/
https://rockset.com/blog/converged-indexing-the-secret-sauce-behind-rocksets-fast-queries/

Data applications require complex queries- aggregations, joins, filters- on data from different
sources. They also generally involve selective predicates or querying a subset of the data based
on the user, product line, geo, etc. which differ from traditional data warehouse queries. Many
data backends do not support complex queries, specifically joins, so developers are forced to
either pre-join the data or write extensive custom code to do application-side joins, both of which
increase the development time of applications and, potentially, the query latency.

Because of Converged Indexing, every query can make use of an index, so execution time
depends solely on the number of documents matched by the predicates and never the entire
collection size. Even though the datasets used in the assessment have millions of rows, with
aggregations and joins, Rockset is able to achieve a query latency of 10s of milliseconds on
queries with selective predicates.

Rockset built a schemaless SQL query engine from the ground up as traditional SQL systems
do not handle mixed types or deal well with deeply nested data. Rockset supports ANSI SQL-
including joins, filters, and aggregations natively- and has added extensions, including an
UNNEST function, that can be used to expand arrays of values to be queried.

Traditional databases require administrators to spin up and manage infrastructure behind the
scenes to achieve performance over constantly changing dataset sizes and query patterns.
Databases with serverless auto-scaling remove the need to manage the complexity of the
system such as manually tuning performance for concurrency, data scaling and resource-
intensive queries.

With Rockset, developers can move their applications from development to production faster as
they are no longer bottlenecked on infrastructure management.

The Assessment

We used two nested JSON datasets that are modeled on an e-commerce reservation system to
showcase Rockset’s ability to handle semi-structured datasets. The datasets are publicly
available at: s3://rockset-public-datasets/reservations.

Reservation data: 100GB in size with 300M rows of reservation data that mirrors real-world,
deeply nested application or device data. The reservation data lists resources that are booked

https://rockset.com/blog/dynamic-typing-in-sql/
https://docs.rockset.com/commands#unnest

including the start and end dates of the booking, total number of days booked, the promotion
code used in the booking (if any), the price, and user rating. Each reservation is for a generic
resource- which could represent a hotel room, dinner reservation, flight, etc. in real life.

User data: 100MB in size with 1M rows of user data that mirrors meta-data that is used to
provide necessary contextual information. The user data includes the name, birthdate, and ID of
users. In this example, a user can both book a reservation and create a reservation.

While we only ingested 100 GB for this assessment, most of our customers use Rockset to build
real-time applications on TBs of data. You can explore the data applications built on Rockset on
the customers page.

Reservation schema

{ "price": { The reservations.price.promo
"promo": { ‘ is optional in the booking
"code": "DOORBUSTER", system. The field exists for
"discount": 88.7 some records, ~1%, but is
}, NULL for the rest.

"total": 298.93,
"subtotal": 354.82,

"tax": 32.82 This data is nested- you
:;: / .) e can see the reservation
bookingUser": data has 3 levels of

"ac441d2b-9094-4b33-881b-fcd24623a4a4d",
"resourceId": _
"0c003030-6533-4659-998e-70£6dcda5b50", has 2 levels of nesting
"end": "2019-08-29",
"start": "2019-08-25",
"listingUser": "1e72440f-a2d6-40ef-
ae5f-cflcdleb66b04",
" id": "6d0dea93-6a34-4091-
a2c8-23ffbbc7eae9%",
"rating": 4,
"days": 4,
"reviewText": "Velit ipsum voluptatem
sit neque dolorem aliquam consectetur."

nesting and the user data

https://rockset.com/customers/

Users schema

"name": {
"last": "Hess",
"first": "John"

}o

"oid":
"088dc96d-81d8-40d9-98d3-53d75ed47dce",

"verified": true,

"birthday": "1994-09-22"

As stated earlier, the queries were drawn from patterns we see in data application queries
including joining large collections with smaller dimension collections, low-cardinality
aggregations within a large collection, operations on nested fields/arrays, and selective
predicates over large collections.

We asked the following questions of the data:

1.

2
3
4.
5
6

What were the total number of reservation days booked for specific users?

How frequently were promotion codes used in reservation bookings?

What was the average discount received when a specific promotion code was applied?
Which user booked the longest reservation for a specific set of resources?

For a specific user, what was the average rating they gave to each resource?

Did a user book overlapping reservations? If so, what were the reservations that
overlapped?

Did a resource have overlapping reservations? If so, what were the reservations that
overlapped?

For a specific user, which promotion codes did they use?

For a specific resource, what were the last 10 reservation bookings? Which users
booked the reservations?

Rockset’s Configuration

We used Rockset’s out-of-the-box configuration to run these queries to assess query
performance, meaning we did not hand tune the cluster. With strong out-of-the-box
performance, developers can build data applications at scale faster. The performance
assessment used the same configuration that we provide to every trial account: Rockset’s c12
instance type and 2 replicas for consistency and availability. You can find more information on
this configuration on our pricing page.

As we intended for this assessment to mirror how an application developer would use Rockset,
we used the Python client to ingest data, create the collections, and issue the queries.

We provided the configuration files to load the collections into Rockset from the Python client
below. You can think of collections in Rockset as tables in the relational world. You can see from
the reservation and user collections that we used field mappings to specify transformations for
time series indexing (since JSON can’t natively encode dates).

You can access them from: rock create -f users.yaml and rock create -f reservations.yaml.

https://rockset.com/pricing/
https://docs.rockset.com/python

Reservations Collection:

workspace: commons
name: reservations
sources:
- s3:
bucket: rockset-public-datasets
prefix: reservations/reservations/
type: COLLECTION
field mappings:
- name: start
input fields:
- field name: start
if missing: SKIP
is_drop: false
param: param
output field:
field name: start
on_error: FAIL
value:
sql: CAST(:param AS DATE)
- name: end
input_ fields:
- field name: end
if missing: SKIP
is drop: false
param: param
output field:
field name: end
on_error: FAIL
value:
sql: CAST(:param AS DATE)

Users Collection:

workspace: commons
name: users
sources:
- s3:
bucket: rockset-public-datasets
prefix: reservations/users
type: COLLECTION
field mappings:
- name: birthday
input fields:
- field name: birthday
if missing: SKIP
is_drop: false
param: param
output field:
field name: birthday
on_error: FAIL
value:

sql: CAST(:param AS DATE)

Results

Query ID

Description

Total days
booked for
some specific
users
Frequency of
all promo
codes

Usage of a
particular
promo code
Who had the
longest
reservation for
participating
resources
Avg review by
resource for a
user

Find
overlapping
reservations
for a user
Find
overlapping
reservations
for a resource
Usage of
promos by a
given user
Last 10 users
to have a
reservation for
a resource

Rows
Processed
591

3,000,994

11,346

146

274

331

40

52

Runtime (ms)

25

1240

23

25

21

158

29

290

21

Rows
inT
Returned Join Type
2 Hash Join
12 N/A
1 N/A

73 Lookup Join

9 N/A

318 Self Hash Join

1 Self Hash Join

7 N/A

10 Lookup Join

Performance of individual queries

For each query we provide the SQL and the output of the EXPLAIN command for that query.

Query 1

Query: What were the total number of reservation days booked for specific users?

-- Total days booked for some specific users

SELECT
CONCAT(u.name.first, ' ', u.name.last) name
g."days"
FROM
SELECT
r.bookingUser
SUM(r."days") "days"
FROM
commons .reservations r
WHERE
r.bookingUser IN
'b735bl18a-50bd-4d5e-8d71-ac£88aa95150"
'f22c49aa-7a41-43b3-86e8-5fe67ee8297b"'
GROUP BY
r.bookingUser
aq

INNER JOIN commons.users u ON g.bookingUser u. id
WHERE
u. id IN
'b735bl8a-50bd-4d5e-8d71-acf88aa95150"
'f22c49aa-7a41-43b3-86e8-5fe67ee8297b'

Results: The query runtime was 25ms and processed 591 rows. The query used an aggregation
to sum the total days booked, a hash join to display both user and reservation data, and a
selective predicate to filter on a specific set of users.

Explain:

select name:$7, days:$3
project $7=(concat($5, " ", $6))
hash inner join on ($1 = $4)
aggregate on ($1): $3=sum($2)
index filter on commons.reservations:

fields($1=bookingUser, $2=days),
query($Sl:string["b735bl8a-50bd-4d5e-8d71-
acf88aa95150","b735bl8a-50bd-4d5e-8d71-acf88aa95150"],

string["f22c49aa-7a41-43b3-86e8-5fe67ee8297b","f22c4%9aa-7a41-43

b3-86e8-5fe67ee8297b")

index filter on commons.users: fields($4=_id,
$5=name.first, $6=name.last),
query($4:string["b735bl8a-50bd-4d5e-8d71-
acf88aa95150","b735bl8a-50bd-4d5e-8d71-acf88aa95150"],

string["f22c49aa-7a41-43b3-86e8-5fe67ee8297b","f22c4%9aa-7a41-43

b3-86e8-5fe67ee8297b")

Query 2

Query: How frequently were promotion codes used in reservation bookings?

-- Frequency of all promo codes

SELECT
r.price.promo.code
COUNT "count"
FROM
commons .reservations r
WHERE
r.price.promo.code IS NOT NULL
GROUP BY

r.price.promo.code

Results: The query runtime was 1,240ms and processed 3,000,994 rows. The field

price.promo.code was applied to ~1% of the rows to display Rockset’s ability to handle sparse

fields. The query also used a low-cardinality group-by to display the results by individual
promotion codes.

Explain:

select code:$1, count:S$2

aggregate on ($1): $2=count star ()

index filter on commons.reservations:

fields($Sl=price.promo.code), query($l:array, bool,
bytes[H"" ,Maxbytes), date[1970-01-01,2147483647-12-31],
datetime[1970-01-01T00:00:00.000000,2147483647-12-31T23:59:59.9
999991, float[-inf,inf],
geography[RANGE ENDPOINT(),RANGE ENDPOINT(~)],
int[-9223372036854775808,9223372036854775807], object,
string["",Maxstring), time[00:00:00.000000,23:59:59.999999],
timestamp[@-9223372036855.224192,@9223372036854.7758071])

Query 3

Query: What was the average discount received when a specific promotion code was applied?

-- Usage of a particular promo code
SELECT
AVG(r.price.promo.discount
FROM
commons .reservations r
WHERE
r.price.promo.code 'BLOWOUT'

Results: The query runtime was 23ms and processed 11,346 rows. The query used a highly
selective predicate, a single promotion code, for fast performance.

Explain:

select "?AVG":$3
aggregate on (): $3=avg($2)
index filter on commons.reservations:
fields($Sl=price.promo.code, $2=price.promo.discount),
query($l:string["BLOWOUT", "BLOWOUT"])

Query 4

Query: Which user booked the longest reservation for a specific set of resources?

—-—- Who had the longest reservation for participating resources
SELECT
CONCAT (u.name.first
r."days"
FROM
commons .users u
INNER JOIN commons.reservations r ON r.bookingUser u. id
HINT (join strategy lookup
WHERE
r.resourceld IN
'78695ac9-c9ce-490e-84d8-af45ff51137c’
'0Ob3b34cd-52ef-40fb-a7a0-e03eecadaal76’
'a0fed2d5-a393-4689-8b70-543cc50ecb39’

" ', u.name.last) name

ORDER BY
"days" DESC

Result: The query runtime was 25ms and processed 146 rows. We used Rockset’'s HINT
functionality to provide guidance to the query optimizer on the correct join strategy to use for this
query. The lookup join was used because we are joining on a limited number of rows, a specific
set of resource IDs, for this query.

Explain:

select name:$7, days:$4

project $7=(concat($5, " ", $6))
sort $4 desc
lookup join with commons.users on ($1 = $2)),

fields($2=_id, $5=name.first, $6=name.last), query(all)
index filter on commons.reservations:
fields($1=bookingUser, $4=days, $3=resourceld),
query($3:string["0b3b34cd-52ef-40fb-a7a0-
e03eeadaal776","0b3b34cd-52ef-40fb-a7a0-e03eecad4aald76"],
string["78695ac9-c9ce-490e-84d8-af45f£f51137¢c","78695ac9-
c9ce-490e-84d8-af45ff51137c"], string["al0fed2d5-
a393-4689-8b70-543cc50ecb39", "a0fed2d5-
a393-4689-8b70-543cc50ecb39"])

Query 5

Query: For a specific user, what was the average rating they gave to each resource?

-- Avg review by resource for a user
SELECT

r.resourceld

count

AVG(r.rating
FROM

commons .reservations r
WHERE

r.listingUser '9fd7d081-8fcb-4bb6-aa55-8e278087d3£f9"'
GROUP BY

r.resourceld

Result: The query runtime was 21ms and processed 274 rows. This was a query on a single
collection that filtered on a particular user.

Explain:

select resourcelId:$2, "?count":$5, "?AVG":$4
aggregate on ($2): $4=avg($3), $5=count star ()
index filter on commons.reservations:
fields($1l=listingUser, $3=rating, $2=resourceld),
query($l:string["9£fd7d081-8fcb-4bb6-
aa55-8e278087d3f9","9£fd7d081-8fcb-4bb6-aa55-8e278087d3£f9"])

Query 6

Query: Did a user book overlapping reservations? If so, what were the reservations that
overlapped?

-- Find overlapping reservations for a user
WITH bookings AS
SELECT
_id
r.start start
r."end"
FROM
commons .reservations r
WHERE
r.bookingUser '£306c0d5-98b9-4289-8b16-5124b15b0987"'

SELECT
bl. id
COUNT
FROM
bookings bl
INNER JOIN bookings b2 ON b2.start bl.start
AND b2.start bl."end"
AND bl. id != b2. id
GROUP BY
1

Results: The query runtime was 158ms and processed 331 rows. The query used a hash join
and aggregation.

14

Explain:

select id:$8, "?COUNT":$13
aggregate on ($8): $13=count_star ()
hash inner join on (); extra($ll <= $6, $11 >= §$7, $8 !=

$12)

index filter on commons.reservations: fields($6="end",
$8=_id, $5=bookingUser, $7=start),
query($5:string["£306c0d5-98b9-4289-8b16-5124b15b0987","£306c0d
5-98b9-4289-8b16-5124b15b0987"])

index filter on commons.reservations: fields($12= id,
$9=bookingUser, $ll=start),
query($9:string["£306c0d5-98b9-4289-8b16-5124b15b0987","£306c0d
5-98b9-4289-8b16-5124b15b0987"])

Query 7

Query: Did a resource have overlapping reservations? If so, what were the reservations that
overlapped?

-- Find overlapping reservations for a resource
WITH bookings AS

SELECT

r. id

r.start start

r."end"
FROM

commons .reservations r
WHERE

r.resourceld '336ce95d-1800-4605-a5f£f-9d97a1011643"'

SELECT
COUNT
FROM
bookings bl
INNER JOIN bookings b2 ON b2.start bl.start
AND b2.start bl."end"

AND bl. id != b2. id

Results: The query runtime was 29 ms and processed 40 rows. The query used a self hash join.

Explain:

select "?COUNT":$13
aggregate on (): $13=count star ()
hash inner join on (); extra($ll <= $6, S$11 >= §$7, $8 !=
$12)
index filter on commons.reservations: fields($6="end",
$8=_1id, $5=resourceld, $7=start),
query($5:string["336ce95d-1800-4605-
a5ff-9d97a1011643","336ce95d-1800-4605-a5ff-9d97a1011643"])
index filter on commons.reservations: fields($12=_id,
$9=resourceld, $ll=start), query($9:string["336ce95d-1800-4605-
a5f£f-9d97a1011643","336ce95d-1800-4605-a5f£f-9d97a1011643"])
AND bl. id != b2. id

Query 8

Query: For a specific user, which promotion codes did they use?

-- Usage of promos by a given user

SELECT
r.price.promo.code AS promo_ code
COUNT AS promo_booking count

SUM(r.price.promo.discount) AS total saved
r.bookingUser
FROM
reservations r
WHERE
r.bookingUser '053cfb0d-0454-4ad1-b670-db718f1ded50"'
AND r.price.promo.code IS NOT NULL
GROUP BY
1
4
ORDER BY
3 DESC

Results: The query runtime was 290 ms and processed 9 rows. The query included
aggregations, order by, and multiple predicates.

Explain:

select promo code:$1l, promo booking count:$5, total saved:$4,
bookingUser:$2
sort $4 desc
aggregate on ($1, $2): $5=count star (), $4=sum($3)
index filter on commons.reservations:
fields($2=bookingUser, $l=price.promo.code,
$3=price.promo.discount), query(and($l:array, bool,
bytes[H"" ,Maxbytes), date[1970-01-01,2147483647-12-31],
datetime[1970-01-01T00:00:00.000000,2147483647-12-31T23:59:59.9
999991, float[-inf,inf],
geography[RANGE ENDPOINT(),RANGE ENDPOINT(~)],
int[-9223372036854775808,9223372036854775807], object,
string["",Maxstring), time[00:00:00.000000,23:59:59.999999],
timestamp[@-9223372036855.224192,@9223372036854.775807],
$2:string["053cfb0d-0454-4adl-b670-
db718f1ded50","053cfb0d-0454-4ad1-b670-db718£1ded50"]))

Query 9

Query: For a specific resource, what were the last 10 reservation bookings? Which users
booked?

-— Last 10 users to have a reservation for a resource

SELECT
CONCAT (u.name.first, ' ', u.name.last) name
r."days" length of stay

FROM
users u

INNER JOIN reservations r ON r.bookingUser u. id
HINT(join_ strategy lookup
WHERE

r.resourceld 'eb69b13a-6£65-4d01-8464-be0e9a48073d"
ORDER BY

r.start DESC
LIMIT

Results: The query runtime was 21 ms and processed 52 rows. The query used a lookup join
and an order by statement.

Explain:

select name:$8, length of stay:$4
limit 10 ordered by $7 desc
project $8=(concat($5, " ", $6))
sort $7 desc
lookup join with commons.users on ($1 = $2)),
fields($2= id, $5=name.first, $6=name.last), query(all)

index filter on commons.reservations:
fields($1=bookingUser, $4=days, $3=resourceld, $7=start),
query($3:string["eb69bl3a-6£65-4d01-8464-
be0e%9a48073d", "eb69bl3a-6£f65-4d01-8464-be0e9a48073d"])

Summary

The goal of the query assessment was to provide a frame of reference to evaluate Rockset as a

real-time database in the cloud. As displayed in the results, Rockset runs complex queries on

semi-structured data in milliseconds without any manual performance tuning. Queries that used

selective predicates were able to return in 10s of milliseconds, making Rockset a great fit for
data applications that automate intelligent decisions on real-time data.

Rockset attained a high level of performance because of its underlying tech, including

schemaless ingest of semi-structured data, Converged Indexing™ for fast query performance,
and serverless auto-scaling for out-of-the-box performance at scale.

https://rockset.com/blog/from-schemaless-ingest-to-smart-schema-enabling-sql-on-raw-data/
https://rockset.com/blog/converged-indexing-the-secret-sauce-behind-rocksets-fast-queries/
https://rockset.com/blog/aggregator-leaf-tailer-an-architecture-for-live-analytics-on-event-streams/

Next Steps

Sign Up Sign up for a free 14 day trial of Rockset and receive $300 in
free credits to reproduce the results. Start my free trial>>

Join the community Join the Rockset slack community. Join now>>

Connect with Us Connect with a solution architect Connect now>>

0000

19

http://www.twitter.com/RocksetCloud
http://www.facebook.com/RocksetCloud
http://www.facebook.com/RocksetCloud
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
https://console.rockset.com/create
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
mailto:product@rockset.com
http://www.linkedin.com/companies/RocksetCloud
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
http://www.twitter.com/RocksetCloud
https://console.rockset.com/create
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
mailto:product@rockset.com
http://www.linkedin.com/companies/RocksetCloud

