
Query Performance Assessment
Ari Ekmekji

April 2020

Performance Objectives
Data applications include customer 360s, fraud detection applications, gaming leaderboards
and IoT applications. These applications require highly performant, complex queries on fresh
data. For this assessment, we used sample datasets and queries that reflect the performance
objectives of data applications.

Ability to handle semi-structured data

Application or device data is commonly available to developers in datasets that do not have a
fixed schema. For example, JSON data regularly contains deeply nested arrays and objects,
mixed data types, null values and missing fields. Time-consuming schema definition and data
prep is traditionally required before a developer can read the data, elongating the application
development lifecycle. We ingested deeply nested JSON documents with sparse fields for the
assessment without flattening the data ahead of time.

Rockset permits schemaless ingest of data, making it easy to write semi-structured data into the
system. Rockset uses Converged IndexingTM to automatically index every field of the ingested
data in a row-based store, column-based store, and a search index. With indexing, sparse fields
do not require scanning an entire column in order to run computation on the few, non-null rows.
Instead, Rockset identifies those rows directly every time and can process them in a fraction of
the time most databases require.

This assessment is an inside look into the performance of Rockset,
illustrating real-world numbers for what you can expect when querying data
in Rockset. For an assessment of query performance, we ingested 100 GB
of sample e-commerce booking data and ran a series of queries- 9 in total-
that are representative of what a data application might do.

https://rockset.com/blog/from-schemaless-ingest-to-smart-schema-enabling-sql-on-raw-data/
https://rockset.com/blog/converged-indexing-the-secret-sauce-behind-rocksets-fast-queries/

Fast performance for data application queries

Data applications require complex queries- aggregations, joins, filters- on data from different
sources. They also generally involve selective predicates or querying a subset of the data based
on the user, product line, geo, etc. which differ from traditional data warehouse queries. Many
data backends do not support complex queries, specifically joins, so developers are forced to
either pre-join the data or write extensive custom code to do application-side joins, both of which
increase the development time of applications and, potentially, the query latency.

Because of Converged Indexing, every query can make use of an index, so execution time
depends solely on the number of documents matched by the predicates and never the entire
collection size. Even though the datasets used in the assessment have millions of rows, with
aggregations and joins, Rockset is able to achieve a query latency of 10s of milliseconds on
queries with selective predicates.

Rockset built a schemaless SQL query engine from the ground up as traditional SQL systems
do not handle mixed types or deal well with deeply nested data. Rockset supports ANSI SQL-
including joins, filters, and aggregations natively- and has added extensions, including an
UNNEST function, that can be used to expand arrays of values to be queried.

Serverless auto-scaling for out-of-the-box query performance

Traditional databases require administrators to spin up and manage infrastructure behind the
scenes to achieve performance over constantly changing dataset sizes and query patterns.
Databases with serverless auto-scaling remove the need to manage the complexity of the
system such as manually tuning performance for concurrency, data scaling and resource-
intensive queries.

With Rockset, developers can move their applications from development to production faster as
they are no longer bottlenecked on infrastructure management.

The Assessment
The dataset

We used two nested JSON datasets that are modeled on an e-commerce reservation system to
showcase Rockset’s ability to handle semi-structured datasets. The datasets are publicly
available at: s3://rockset-public-datasets/reservations.

Reservation data: 100GB in size with 300M rows of reservation data that mirrors real-world,
deeply nested application or device data. The reservation data lists resources that are booked

 2

https://rockset.com/blog/dynamic-typing-in-sql/
https://docs.rockset.com/commands#unnest

including the start and end dates of the booking, total number of days booked, the promotion
code used in the booking (if any), the price, and user rating. Each reservation is for a generic
resource- which could represent a hotel room, dinner reservation, flight, etc. in real life.

User data: 100MB in size with 1M rows of user data that mirrors meta-data that is used to
provide necessary contextual information. The user data includes the name, birthdate, and ID of
users. In this example, a user can both book a reservation and create a reservation.

While we only ingested 100 GB for this assessment, most of our customers use Rockset to build
real-time applications on TBs of data. You can explore the data applications built on Rockset on
the customers page.

Reservation schema

 3

{
 "price": {
 "promo": {
 "code": "DOORBUSTER",
 "discount": 88.7
 },
 "total": 298.93,
 "subtotal": 354.82,
 "tax": 32.82
 },
 "bookingUser":
"ac441d2b-9094-4b33-881b-fcd24623a4a4",
 "resourceId":
"0c003030-6533-4659-998e-70f6dcda5b50",
 "end": "2019-08-29",
 "start": "2019-08-25",
 "listingUser": "1e72440f-a2d6-40ef-
ae5f-cf1c41e66b04",
 "_id": "6d0dea93-6a34-4091-
a2c8-23ffbbc7eae9",
 "rating": 4,
 "days": 4,
 "reviewText": "Velit ipsum voluptatem
sit neque dolorem aliquam consectetur."
}

2

This data is nested- you
can see the reservation
data has 3 levels of
nesting and the user data
has 2 levels of nesting

1
The reservations.price.promo
is optional in the booking
system. The field exists for
some records, ~1%, but is
NULL for the rest.

https://rockset.com/customers/

Users schema

The queries

As stated earlier, the queries were drawn from patterns we see in data application queries
including joining large collections with smaller dimension collections, low-cardinality
aggregations within a large collection, operations on nested fields/arrays, and selective
predicates over large collections.

We asked the following questions of the data:

1. What were the total number of reservation days booked for specific users?

2. How frequently were promotion codes used in reservation bookings?

3. What was the average discount received when a specific promotion code was applied?

4. Which user booked the longest reservation for a specific set of resources?

5. For a specific user, what was the average rating they gave to each resource?

6. Did a user book overlapping reservations? If so, what were the reservations that
overlapped?

7. Did a resource have overlapping reservations? If so, what were the reservations that
overlapped?

8. For a specific user, which promotion codes did they use?

9. For a specific resource, what were the last 10 reservation bookings? Which users
booked the reservations?

 4

{
 "name": {
 "last": "Hess",
 "first": "John"
 },
 "_id":
"088dc96d-81d8-40d9-98d3-53d75ed47dce",
 "verified": true,
 "birthday": "1994-09-22"
}

Rockset’s Configuration
Rockset’s configuration

We used Rockset’s out-of-the-box configuration to run these queries to assess query
performance, meaning we did not hand tune the cluster. With strong out-of-the-box
performance, developers can build data applications at scale faster. The performance
assessment used the same configuration that we provide to every trial account: Rockset’s c12
instance type and 2 replicas for consistency and availability. You can find more information on
this configuration on our pricing page.

How we ran the assessment

As we intended for this assessment to mirror how an application developer would use Rockset,
we used the Python client to ingest data, create the collections, and issue the queries.

We provided the configuration files to load the collections into Rockset from the Python client
below. You can think of collections in Rockset as tables in the relational world. You can see from
the reservation and user collections that we used field mappings to specify transformations for
time series indexing (since JSON can’t natively encode dates).

You can access them from: rock create -f users.yaml and rock create -f reservations.yaml.

 5

https://rockset.com/pricing/
https://docs.rockset.com/python

Reservations Collection:

 6

workspace: commons
name: reservations
sources:
- s3:
 bucket: rockset-public-datasets
 prefix: reservations/reservations/
type: COLLECTION
field_mappings:
- name: start
 input_fields:
 - field_name: start
 if_missing: SKIP
 is_drop: false
 param: param
 output_field:
 field_name: start
 on_error: FAIL
 value:
 sql: CAST(:param AS DATE)
- name: end
 input_fields:
 - field_name: end
 if_missing: SKIP
 is_drop: false
 param: param
 output_field:
 field_name: end
 on_error: FAIL
 value:
 sql: CAST(:param AS DATE)

Users Collection:

 7

workspace: commons
name: users
sources:
- s3:
 bucket: rockset-public-datasets
 prefix: reservations/users
type: COLLECTION
field_mappings:
- name: birthday
 input_fields:
 - field_name: birthday
 if_missing: SKIP
 is_drop: false
 param: param
 output_field:
 field_name: birthday
 on_error: FAIL
 value:
 sql: CAST(:param AS DATE)

Results
Results Table

Query ID Description
Rows

Processed
Runtime (ms)

Rows
Returned

Join Type

1 Total days
booked for
some specific
users

591 25 2 Hash Join

2 Frequency of
all promo
codes

3,000,994 1240 12 N/A

3 Usage of a
particular
promo code

11,346 23 1 N/A

4 Who had the
longest
reservation for
participating
resources

146 25 73 Lookup Join

5 Avg review by
resource for a
user

274 21 9 N/A

6 Find
overlapping
reservations
for a user

331 158 318 Self Hash Join

7 Find
overlapping
reservations
for a resource

40 29 1 Self Hash Join

8 Usage of
promos by a
given user

9 290 7 N/A

9 Last 10 users
to have a
reservation for
a resource

52 21 10 Lookup Join

 8

Performance of individual queries

For each query we provide the SQL and the output of the EXPLAIN command for that query.

Query 1

Query: What were the total number of reservation days booked for specific users?

Results: The query runtime was 25ms and processed 591 rows. The query used an aggregation
to sum the total days booked, a hash join to display both user and reservation data, and a
selective predicate to filter on a specific set of users.

 9

-- Total days booked for some specific users
SELECT
 CONCAT(u.name.first, ' ', u.name.last) name,
 q."days"
FROM
 (
 SELECT
 r.bookingUser,
 SUM(r."days") "days"
 FROM
 commons.reservations r
 WHERE
 r.bookingUser IN (
 'b735b18a-50bd-4d5e-8d71-acf88aa95150',
 'f22c49aa-7a41-43b3-86e8-5fe67ee8297b'
)
 GROUP BY
 r.bookingUser
) q
 INNER JOIN commons.users u ON q.bookingUser = u._id
WHERE
 u._id IN (
 'b735b18a-50bd-4d5e-8d71-acf88aa95150',
 'f22c49aa-7a41-43b3-86e8-5fe67ee8297b'
)

Explain:

Query 2

Query: How frequently were promotion codes used in reservation bookings?

Results: The query runtime was 1,240ms and processed 3,000,994 rows. The field
price.promo.code was applied to ~1% of the rows to display Rockset’s ability to handle sparse
fields. The query also used a low-cardinality group-by to display the results by individual
promotion codes.

 10

-- Frequency of all promo codes
SELECT
 r.price.promo.code,
 COUNT(*) "count"
FROM
 commons.reservations r
WHERE
 r.price.promo.code IS NOT NULL
GROUP BY
 r.price.promo.code

select name:$7, days:$3
 project $7=(concat($5, " ", $6))
 hash inner join on ($1 = $4)
 aggregate on ($1): $3=sum($2)
 index filter on commons.reservations:
fields($1=bookingUser, $2=days),
query($1:string["b735b18a-50bd-4d5e-8d71-
acf88aa95150","b735b18a-50bd-4d5e-8d71-acf88aa95150"],
string["f22c49aa-7a41-43b3-86e8-5fe67ee8297b","f22c49aa-7a41-43
b3-86e8-5fe67ee8297b"])
 index filter on commons.users: fields($4=_id,
$5=name.first, $6=name.last),
query($4:string["b735b18a-50bd-4d5e-8d71-
acf88aa95150","b735b18a-50bd-4d5e-8d71-acf88aa95150"],
string["f22c49aa-7a41-43b3-86e8-5fe67ee8297b","f22c49aa-7a41-43
b3-86e8-5fe67ee8297b"])

Explain:

Query 3

Query: What was the average discount received when a specific promotion code was applied?

Results: The query runtime was 23ms and processed 11,346 rows. The query used a highly
selective predicate, a single promotion code, for fast performance.

Explain:

 11

select code:$1, count:$2
 aggregate on ($1): $2=count_star_()
 index filter on commons.reservations:
fields($1=price.promo.code), query($1:array, bool,
bytes[H"",Maxbytes), date[1970-01-01,2147483647-12-31],
datetime[1970-01-01T00:00:00.000000,2147483647-12-31T23:59:59.9
99999], float[-inf,inf],
geography[RANGE_ENDPOINT(),RANGE_ENDPOINT(~)],
int[-9223372036854775808,9223372036854775807], object,
string["",Maxstring), time[00:00:00.000000,23:59:59.999999],
timestamp[@-9223372036855.224192,@9223372036854.775807])

-- Usage of a particular promo code
SELECT
 AVG(r.price.promo.discount)
FROM
 commons.reservations r
WHERE
 r.price.promo.code = 'BLOWOUT'

select "?AVG":$3
 aggregate on (): $3=avg($2)
 index filter on commons.reservations:
fields($1=price.promo.code, $2=price.promo.discount),
query($1:string["BLOWOUT","BLOWOUT"])

Query 4

Query: Which user booked the longest reservation for a specific set of resources?

Result: The query runtime was 25ms and processed 146 rows. We used Rockset’s HINT
functionality to provide guidance to the query optimizer on the correct join strategy to use for this
query. The lookup join was used because we are joining on a limited number of rows, a specific
set of resource IDs, for this query.

Explain:

 12

-- Who had the longest reservation for participating resources
SELECT
 CONCAT(u.name.first, ' ', u.name.last) name,
 r."days"
FROM
 commons.users u
 INNER JOIN commons.reservations r ON r.bookingUser = u._id
HINT(join_strategy = lookup)
WHERE
 r.resourceId IN (
 '78695ac9-c9ce-490e-84d8-af45ff51137c',
 '0b3b34cd-52ef-40fb-a7a0-e03eea4aa076',
 'a0fed2d5-a393-4689-8b70-543cc50ecb39'
)
ORDER BY
 "days" DESC

select name:$7, days:$4
 project $7=(concat($5, " ", $6))
 sort $4 desc
 lookup join with commons.users on ($1 = $2)),
fields($2=_id, $5=name.first, $6=name.last), query(all)
 index filter on commons.reservations:
fields($1=bookingUser, $4=days, $3=resourceId),
query($3:string["0b3b34cd-52ef-40fb-a7a0-
e03eea4aa076","0b3b34cd-52ef-40fb-a7a0-e03eea4aa076"],
string["78695ac9-c9ce-490e-84d8-af45ff51137c","78695ac9-
c9ce-490e-84d8-af45ff51137c"], string["a0fed2d5-
a393-4689-8b70-543cc50ecb39","a0fed2d5-
a393-4689-8b70-543cc50ecb39"])

Query 5

Query: For a specific user, what was the average rating they gave to each resource?

Result: The query runtime was 21ms and processed 274 rows. This was a query on a single
collection that filtered on a particular user.

Explain:

 13

-- Avg review by resource for a user
SELECT
 r.resourceId,
 count(*),
 AVG(r.rating)
FROM
 commons.reservations r
WHERE
 r.listingUser = '9fd7d081-8fcb-4bb6-aa55-8e278087d3f9'
GROUP BY
 r.resourceId

select resourceId:$2, "?count":$5, "?AVG":$4
 aggregate on ($2): $4=avg($3), $5=count_star_()
 index filter on commons.reservations:
fields($1=listingUser, $3=rating, $2=resourceId),
query($1:string["9fd7d081-8fcb-4bb6-
aa55-8e278087d3f9","9fd7d081-8fcb-4bb6-aa55-8e278087d3f9"])

Query 6

Query: Did a user book overlapping reservations? If so, what were the reservations that
overlapped?

Results: The query runtime was 158ms and processed 331 rows. The query used a hash join
and aggregation.

 14

-- Find overlapping reservations for a user
WITH bookings AS (
 SELECT
 _id,
 r.start start,
 r."end"
 FROM
 commons.reservations r
 WHERE
 r.bookingUser = 'f306c0d5-98b9-4289-8b16-5124b15b0987'
)
SELECT
 b1._id,
 COUNT(*)
FROM
 bookings b1
 INNER JOIN bookings b2 ON b2.start >= b1.start
 AND b2.start <= b1."end"
 AND b1._id != b2._id
GROUP BY
 1

Explain:

Query 7

Query: Did a resource have overlapping reservations? If so, what were the reservations that
overlapped?

 15

select _id:$8, "?COUNT":$13
 aggregate on ($8): $13=count_star_()
 hash inner join on (); extra($11 <= $6, $11 >= $7, $8 !=
$12)
 index filter on commons.reservations: fields($6="end",
$8=_id, $5=bookingUser, $7=start),
query($5:string["f306c0d5-98b9-4289-8b16-5124b15b0987","f306c0d
5-98b9-4289-8b16-5124b15b0987"])
 index filter on commons.reservations: fields($12=_id,
$9=bookingUser, $11=start),
query($9:string["f306c0d5-98b9-4289-8b16-5124b15b0987","f306c0d
5-98b9-4289-8b16-5124b15b0987"])

-- Find overlapping reservations for a resource
WITH bookings AS (
 SELECT
 r._id,
 r.start start,
 r."end"
 FROM
 commons.reservations r
 WHERE
 r.resourceId = '336ce95d-1800-4605-a5ff-9d97a1011643'
)
SELECT
 COUNT(*)
FROM
 bookings b1
 INNER JOIN bookings b2 ON b2.start >= b1.start
 AND b2.start <= b1."end"
 AND b1._id != b2._id

Results: The query runtime was 29 ms and processed 40 rows. The query used a self hash join.

Explain:

Query 8

Query: For a specific user, which promotion codes did they use?

 16

select "?COUNT":$13
 aggregate on (): $13=count_star_()
 hash inner join on (); extra($11 <= $6, $11 >= $7, $8 !=
$12)
 index filter on commons.reservations: fields($6="end",
$8=_id, $5=resourceId, $7=start),
query($5:string["336ce95d-1800-4605-
a5ff-9d97a1011643","336ce95d-1800-4605-a5ff-9d97a1011643"])
 index filter on commons.reservations: fields($12=_id,
$9=resourceId, $11=start), query($9:string["336ce95d-1800-4605-
a5ff-9d97a1011643","336ce95d-1800-4605-a5ff-9d97a1011643"])
 AND b1._id != b2._id

-- Usage of promos by a given user
SELECT
 r.price.promo.code AS promo_code,
 COUNT(*) AS promo_booking_count,
 SUM(r.price.promo.discount) AS total_saved,
 r.bookingUser
FROM
 reservations r
WHERE
 r.bookingUser = '053cfb0d-0454-4ad1-b670-db718f1ded50'
 AND r.price.promo.code IS NOT NULL
GROUP BY
 1,
 4
ORDER BY
 3 DESC

Results: The query runtime was 290 ms and processed 9 rows. The query included
aggregations, order by, and multiple predicates.

Explain:

Query 9

Query: For a specific resource, what were the last 10 reservation bookings? Which users
booked?

 17

select promo_code:$1, promo_booking_count:$5, total_saved:$4,
bookingUser:$2
 sort $4 desc
 aggregate on ($1, $2): $5=count_star_(), $4=sum($3)
 index filter on commons.reservations:
fields($2=bookingUser, $1=price.promo.code,
$3=price.promo.discount), query(and($1:array, bool,
bytes[H"",Maxbytes), date[1970-01-01,2147483647-12-31],
datetime[1970-01-01T00:00:00.000000,2147483647-12-31T23:59:59.9
99999], float[-inf,inf],
geography[RANGE_ENDPOINT(),RANGE_ENDPOINT(~)],
int[-9223372036854775808,9223372036854775807], object,
string["",Maxstring), time[00:00:00.000000,23:59:59.999999],
timestamp[@-9223372036855.224192,@9223372036854.775807],
$2:string["053cfb0d-0454-4ad1-b670-
db718f1ded50","053cfb0d-0454-4ad1-b670-db718f1ded50"]))

-- Last 10 users to have a reservation for a resource
SELECT
 CONCAT(u.name.first, ' ', u.name.last) name,
 r."days" length_of_stay
FROM
 users u
 INNER JOIN reservations r ON r.bookingUser = u._id
HINT(join_strategy = lookup)
WHERE
 r.resourceId = 'eb69b13a-6f65-4d01-8464-be0e9a48073d'
ORDER BY
 r.start DESC
LIMIT
 10

Results: The query runtime was 21 ms and processed 52 rows. The query used a lookup join
and an order by statement.

Explain:

Summary
The goal of the query assessment was to provide a frame of reference to evaluate Rockset as a
real-time database in the cloud. As displayed in the results, Rockset runs complex queries on
semi-structured data in milliseconds without any manual performance tuning. Queries that used
selective predicates were able to return in 10s of milliseconds, making Rockset a great fit for
data applications that automate intelligent decisions on real-time data.

Rockset attained a high level of performance because of its underlying tech, including
schemaless ingest of semi-structured data, Converged IndexingTM for fast query performance,
and serverless auto-scaling for out-of-the-box performance at scale.

 18

select name:$8, length_of_stay:$4
 limit 10 ordered by $7 desc
 project $8=(concat($5, " ", $6))
 sort $7 desc
 lookup join with commons.users on ($1 = $2)),
fields($2=_id, $5=name.first, $6=name.last), query(all)

 index filter on commons.reservations:
fields($1=bookingUser, $4=days, $3=resourceId, $7=start),
query($3:string["eb69b13a-6f65-4d01-8464-
be0e9a48073d","eb69b13a-6f65-4d01-8464-be0e9a48073d"])

https://rockset.com/blog/from-schemaless-ingest-to-smart-schema-enabling-sql-on-raw-data/
https://rockset.com/blog/converged-indexing-the-secret-sauce-behind-rocksets-fast-queries/
https://rockset.com/blog/aggregator-leaf-tailer-an-architecture-for-live-analytics-on-event-streams/

 19

Next Steps

Sign Up Sign up for a free 14 day trial of Rockset and receive $300 in
free credits to reproduce the results. Start my free trial>>

Join the community Join the Rockset slack community. Join now>>

Connect with Us Connect with a solution architect Connect now>>

FB TW IN SL

http://www.twitter.com/RocksetCloud
http://www.facebook.com/RocksetCloud
http://www.facebook.com/RocksetCloud
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
https://console.rockset.com/create
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
mailto:product@rockset.com
http://www.linkedin.com/companies/RocksetCloud
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
http://www.twitter.com/RocksetCloud
https://console.rockset.com/create
https://join.slack.com/t/rockset-community/shared_invite/zt-d92vosgj-l6LF~K_7EyiITzTGqb9pMA
mailto:product@rockset.com
http://www.linkedin.com/companies/RocksetCloud

